《甘肃省武威市凉州区重点中学2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省武威市凉州区重点中学2022-2023学年中考试题猜想数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题是假命题的是()A有一个外角是120的等腰三角形是等边三角形B等边三角形有3条对称轴C有两边和一角对应相等的两个三角形全等D有一边对应相等的两个等边三角形全等2如图是一个由5个相同
2、的正方体组成的立体图形,它的俯视图是()ABCD3下列运算正确的是()A B =3 Caa2=a2 D(2a3)2=4a64如图,直线ab,一块含60角的直角三角板ABC(A60)按如图所示放置若155,则2的度数为()A105B110C115D1205抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn6在3,0,4,这四个数中,最大的数是( )A3B0C4D7下列运算结果是无理数的是()A3BCD8绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400
3、600100020003000发芽的粒数m9628238257094819042850发芽的频率0.9600.9400.9550.9500.9480.9520.950下面有三个推断:当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;根据上表,估计绿豆发芽的概率是0.95;若n为4000,估计绿豆发芽的粒数大约为3800粒其中推断合理的是()ABCD9在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为210如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的
4、中点,若BC=2,则EF的长度为()A B1 C D11若ABCABC,A=40,C=110,则B等于( )A30B50C40D7012下面运算结果为的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,菱形ABCD的边长为15,sinBAC=,则对角线AC的长为_.14中,高,则的周长为_。15如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_16如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE=_ 17已知x、y是实数且满足x2+xy+y22=0,设M=x2xy+y2,则M的
5、取值范围是_18已知函数是关于的二次函数,则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由20(6分)(1)化简:(2)解不等式组21(6分)如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比
6、例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点的坐标22(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调
7、查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数23(8分)关于x的一元二次方程ax2+bx+1=1当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根24(10分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长25(10分)如图,AB是O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交O于点C,连接BC,过点D作FDOC交O的切线EF于点F(1)求证:CBEF;(2)若O的半径是2,点D是OC中点,CBE15,求线段EF的长26(
8、12分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y0),这里等式右边是通常的四则运算如:T(3,1)=,T(m,2)=填空:T(4,1)= (用含a,b的代数式表示);若T(2,0)=2且T(5,1)=1求a与b的值;若T(3m10,m)=T(m,3m10),求m的值27(12分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1
9、、C【解析】解:A 外角为120,则相邻的内角为60,根据有一个角为60的等腰三角形是等边三角形可以判断,故A选项正确;B 等边三角形有3条对称轴,故B选项正确;C当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D利用SSS可以判定三角形全等故D选项正确;故选C2、C【解析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、
10、俯视图是分别从物体正面、 左面和上面看所得到的图形;3、D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误; B.,故原选项错误;C. ,故原选项错误;D. ,故该选项正确.故选D.4、C【解析】如图,首先证明AMO=2,然后运用对顶角的性质求出ANM=55;借助三角形外角的性质求出AMO即可解决问题【详解】如图,对图形进行点标注.直线ab,AMO=2;ANM=1,而1=55,ANM=55,2=AMO=A+ANM=60+55=115,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.5、C【解析】分析:将一般式配方成顶点式,得出
11、对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,6、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C7、B【解析】根据二次根式的运算法则即可求出答案【详解】A选项:原式326,故A不是无理数;B选项:原式,故B是无理数;C选项:原式6,故C不是无理数;D选项:原式12,故D不是
12、无理数故选B【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型8、D【解析】利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,错误;利用频率估计概率,大量反复试验下频率稳定值即概率,可得正确;用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,正确【详解】当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;若n为4000,估计绿豆发芽的粒数大约为40000.950=3800粒,此
13、结论正确故选D【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比9、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型10、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=A
14、B= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.11、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30,根据相似三角形的性质可得:B=B=30.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.12、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断【详解】. ,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.
15、,此选项不符合题意;故选:【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方二、填空题:(本大题共6个小题,每小题4分,共24分)13、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;14、32或42【解析】根据题意,分两种情况讨论:若ACB是锐角,若ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两种情况讨论:若ACB是锐角,如图1,高, 在RtABD中,即:,同理:,的
16、周长=9+5+15+13=42,若ACB是钝角,如图2,高, 在RtABD中,即:,同理:,的周长=9-5+15+13=32,故答案是:32或42. 【点睛】本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.15、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.16、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30,再根据ACB=8
17、0即可解答【详解】DE垂直平分AC,A=30,AE=CE,ACE=A=30,ACB=80,BCE=80-30=1故答案为:117、M6【解析】把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围【详解】由得: 即 所以 由得: 即 所以 不等式两边同时乘以2得:,即 两边同时加上2得:即 则M的取值范围是
18、M6.故答案为:M6.【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.18、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”三、解答题:(本大题共9个小题,共78分,解答应写出文字
19、说明、证明过程或演算步骤19、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,
20、即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论20、(1);(2)2x1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等式组整理得:, 则不等式组的解集为2x1【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或
21、除以的是负数时要变号.21、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6,1)分别代入ykx+b,得:,解得:,所以
22、一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时,得到OE12OD4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键22、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受
23、问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:360=90;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图
24、的相关知识点.23、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.24、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即
25、可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.25、(1)详见解析;(1)【解析】(1)连接OE交DF于点H
26、,由切线的性质得出F+EHF =90,由FDOC得出DOH+DHO =90,依据对顶角的定义得出EHFDHO,从而求得F=DOH,依据CBE=DOH,从而即可得证; (1)依据圆周角定理及其推论得出F=COE1CBE =30,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值【详解】(1)证明:连接OE交DF于点H,EF是O的切线,OE是O的半径,OEEFF+EHF90FDOC,DOH+DHO90EHFDHO,FDOHCBEDOH, (1)解:CBE15,FCOE1CBE30O的半径是,点D是OC中点,在RtODH中,cosDOH,O
27、H1 在RtFEH中, 【点睛】本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键26、(1) ;(2)a=1,b=-1,m=2【解析】(1)根据题目中的新运算法则计算即可;(2)根据题意列出方程组即可求出a,b的值;先分别算出T(3m3,m)与T(m,3m3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T(4,1)=;故答案为;(2)T(2,0)=2且T(2,1)=1,解得解法一:a=1,b=1,且x+y0,T(x,y)=xyT(3m3,m)=3m3m=2m3,T(m,3m3)=m3m+3=2m+3T(3m3,m)=T
28、(m,3m3),2m3=2m+3,解得,m=2解法二:由解法可得T(x,y)=xy,当T(x,y)=T(y,x)时,xy=yx,x=yT(3m3,m)=T(m,3m3),3m3=m,m=2【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.27、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形的判定与正六边形的性质