《湖北省黄石大冶市重点名校2022-2023学年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省黄石大冶市重点名校2022-2023学年十校联考最后数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年14岁,她一定是初中学生2如图,在平面直角坐标系中RtABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,ABC=30,把RtABC先绕B点顺时针旋转180,然后再向
2、下平移2个单位,则A点的对应点A的坐标为()A(4,2)B(4,2+)C(2,2+)D(2,2)3下列说法正确的是( )A一个游戏的中奖概率是则做10次这样的游戏一定会中奖B为了解全国中学生的心理健康情况,应该采用普查的方式C一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D若甲组数据的方差 S= 0.01 ,乙组数据的方差 s 0 .1 ,则乙组数据比甲组数据稳定4(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,
3、275如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3,3)6如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15B30C45D607如图,ABC中,AB=2,AC=3,1BC5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A6B9C11D无法计算8世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司
4、将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561019分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-110如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.5二、填空题(共7小题,每小题3分,满分21分)11如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行
5、至C处时、测得景点A的俯角为45,景点B的俯角为30,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)12如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:.使得斜边ABb,ACa作法:如图.(1)作射线AP,截取线段ABb;(2)以AB为直径,作O;(3)以点A为圆心,a的长为半径作弧交O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是_.13计算:(2)=_.14将多项式因式分解的结果是 15不等式组的最大整数解是_.16某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、8
6、6、99,则这六位同学成绩的中位数是_17从-5,-,-,-1,0,2,这七个数中随机抽取一个数,恰好为负整数的概率为_三、解答题(共7小题,满分69分)18(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙
7、、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率19(5分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从
8、这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.20(8分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CDx轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0)求该抛物线的解析式;求梯形COBD的面积21(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C
9、处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;CD总计/tA200Bx300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m0),其余线路的运费不变,试讨论总运费最小的调动方案.22(10分)如图,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)画出ABC关于y轴的对称图形A1B1C1,并写出B1点的坐标;(2)画出ABC绕原点O旋转180后得到的图形A2B2C2,并写出B2点的坐标;(3)在
10、x轴上求作一点P,使PAB的周长最小,并直接写出点P的坐标23(12分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分(保留作图痕迹,不写作法)24(14分)(2013年四川绵阳12分)如图,AB是O的直径,C是半圆O上的一点,AC平分DAB,ADCD,垂足为D,AD交O于E,连接CE(1)判断CD与O的位置关系,并证明你的结论;(2)若E是的中点,O的半径为1,求图中阴影部分的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、C、D选项为不确定事件,即随机事件
11、故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件2、D【解析】解:作ADBC,并作出把RtABC先绕B点顺时针旋转180后所得A1BC1,如图所示AC=2,ABC=10,BC=4,AB=2,AD=,BD=1点B坐标为(1,0),A点的坐标为(4,)BD=1,BD1=1,D1坐标为(2,0),A1坐标为(2,)再向下平移2个单位,A的坐标为(2,2)故选D点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键3、C【解析】众数,中位数,方差
12、等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.4、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.5、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A
13、、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键6、B【解析】根据题意得到AOB是等边三角形,求出AOB的度数,根据圆周角定理计算即可【详解】解:OA=AB,OA=OB,AOB是等边三
14、角形,AOB=60,ACB=30,故选B【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键7、B【解析】有旋转的性质得到CB=BE=BH,推出C、B、H在一直线上,且AB为ACH的中线,得到SBEI=SABH=SABC,同理:SCDF=SABC,当BAC=90时, SABC的面积最大,SBEI=SCDF=SABC最大,推出SGBI=SABC,于是得到阴影部分面积之和为SABC的3倍,于是得到结论【详解】把IBE绕B顺时针旋转90,使BI与AB重合,E旋转到H的位置,四边形BCDE为正方形,CBE=90,C
15、B=BE=BH,C、B、H在一直线上,且AB为ACH的中线,SBEI=SABH=SABC,同理:SCDF=SABC,当BAC=90时,SABC的面积最大,SBEI=SCDF=SABC最大,ABC=CBG=ABI=90,GBE=90,SGBI=SABC,所以阴影部分面积之和为SABC的3倍,又AB=2,AC=3,图中阴影部分的最大面积为3 23=9,故选B【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是SABC的3 倍是解题的关键8、B【解析】0.056用科学记数法表示为:0.056=,故选B.9、A【解析】分式的值为2的条件是:(2)分子等于2;(2)
16、分母不为2两个条件需同时具备,缺一不可据此可以解答本题【详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选:A【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件10、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事件有n种可能,
17、而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率二、填空题(共7小题,每小题3分,满分21分)11、100+100【解析】【分析】由已知可得ACD=MCA=45,B=NCB=30,继而可得DCB=60,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45,NCB=30,ACD=MCA=45,B=NCB=30,CDAB,CDA=CDB=90,DCB=60,CD=100米,AD=CD=100米,DB=CDtan60=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直
18、角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 12、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】根据圆周角定理可判断ABC为直角三角形【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90,从而得到ABC满足条件故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了圆周角定理13、-
19、1【解析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论【详解】 故答案为【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键14、m(m+n)(mn)【解析】试题分析:原式=m(m+n)(mn)故答案为:m(m+n)(mn)考点:提公因式法与公式法的综合运用15、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以
20、下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了16、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.17、【解析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:【详解】 这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:故答案为【点睛】本题考查随机事件的概率的计算方法,能准确找出负整
21、数的个数,并熟悉等可能事件的概率计算公式是关键三、解答题(共7小题,满分69分)18、(1)41(2)15%(3)【解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率【详解】(1)喜欢散文的有11人,频率为125,m=11125=41;(2)在扇形统计图中,“其他”类所占的百分比为 111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,P(丙和乙)=19、 (1)72,见解析;(2)7280;(3).【解
22、析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率【详解】(1)扇形统计图中玉兰所对的圆心角为360(1-40%-15%-25%)=72月季的株数为200090%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为800091%=7280(株). 故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的
23、两类花苗有2种.P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键20、(1)(2)【解析】(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积【详解】(1)将A(1,0)代入中,得:0=4a+4,解得:a=1该抛物线解析式为(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,抛物线的对称轴为直线x=1,CD=1A(1,0),B(2,0),即OB=221、(1
24、)见解析;(2)w=2x+9200,方案见解析;(3)0m2时,(2)中调运方案总运费最小;m=2时,在40x240的前提下调运方案的总运费不变;2m0,w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表. (3)由题意知w=20(240x)+25(x40)+(15-m)x+18(300x)=(2m)x+92000m2时,(2)中调运方案总运费最小;m=2时,在40x240的前提下调运方案的总运费不变;2m15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.22、(1)画图见解
25、析;(2)画图见解析;(3)画图见解析.【解析】试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A,连接AB与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可试题解析:(1)、A1B1C1如图所示;B1点的坐标(-4,2) (2)、A2B2C2如图所示;B2点的坐标:(-4,-2) (3)、PAB如图所示,P(2,0)考点:(1)、作图-旋转变换;(
26、2)、轴对称-最短路线问题;(3)、作图-平移变换23、详见解析【解析】先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AEAD,ADBD,故AEAB,而BEAB,而AEC与CEB在AB边上的高相同,所以CEB的面积是AEC的面积的3倍,即SAECSCEB13.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.24、解:(1)CD与O相切理由如下:AC
27、为DAB的平分线,DAC=BACOA=OC,OAC=OCA,DAC=OCAOCADADCD,OCCDOC是O的半径,CD与O相切(2)如图,连接EB,由AB为直径,得到AEB=90,EBCD,F为EB的中点OF为ABE的中位线OF=AE=,即CF=DE=在RtOBF中,根据勾股定理得:EF=FB=DC=E是的中点,=,AE=ECS弓形AE=S弓形ECS阴影=SDEC=【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用