《2022-2023学年湖北省孝感市八校联谊重点名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省孝感市八校联谊重点名校十校联考最后数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1关于的不等式的解集如图所示,则的取值是A0BCD2若2mn6,则代数式m-n+1的值为()A1B2C3D43用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD4在3,0,4,这四个数中,最大的
2、数是( )A3B0C4D5若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A15cm2B24cm2C39cm2D48cm26如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A0.9米B1.3米C1.5米D2米7如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()ABC6D28如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )ABCD9孙子算经是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引
3、绳度之,余绳四尺五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )ABCD10的绝对值是()A4BC4D0.4二、填空题(共7小题,每小题3分,满分21分)11在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘131,其 浓度为0.0000872贝克/立方米数据“0.0000872”用科学记数法可表示为_12若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_13如图,正比例函数y=kx(k0)与反比例函数y=的
4、图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则ABC的面积等于_14九章算术是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为_步15如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_16如图,正方形内的阴影部分是由四个直角边长
5、都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 17如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,第n(n是正整数)个图案中的基础图形个数为_ (用含n的式子表示)三、解答题(共7小题,满分69分)18(10分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分求证:;若的直径长8,求BE的长19(5分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大
6、?20(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表七年级英语口语测试成绩统计表成绩分等级人数A12BmCnD9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中C级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到B级以上包括B级的学生人数21(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得ABC45,ACB30,且BC20米(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求
7、写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD(精确到0.1米)(参考数据:1.414,1.732)22(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随
8、机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率23(12分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由24(14分)定义:对于给定的二次函数y=a(xh)2+k(a0),其伴生一次函数为y=a(xh)+k,例如:二次函数y=2(x+1)23的伴生一次函数为y=2(x+1)3,即y=2x1(1)已知二次函数y=(x1)24,则其伴生一次函
9、数的表达式为_;(2)试说明二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x1)24m(m0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在AOB内部的二次函数y=m(x1)24m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】首先根据不等式的性质,解出x,由数轴可知,x-1,所以=-1,解出即可;【详解】解:不等式,解得x,由数轴可知,所以,解得;故选:【
10、点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示2、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.3、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根
11、据题意找到等量关系.4、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C5、B【解析】试题分析:底面积是:9cm1,底面周长是6cm,则侧面积是:65=15cm1则这个圆锥的全面积为:9+15=14cm1故选B考点:圆锥的计算6、B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可解:在RtACB中,AC2=AB2BC2=2.521.52=1,AC=2,BD=0.9,CD=2.1在RtECD中,EC2=ED2CD2=2.522.12=0
12、.19,EC=0.7,AE=ACEC=20.7=1.2故选B考点:勾股定理的应用7、C【解析】根据题意作出合适的辅助线,可知阴影部分的面积是BCD的面积减去BOE和扇形OEC的面积【详解】由题意可得,BC=CD=4,DCB=90,连接OE,则OE=BC,OEDC,EOB=DCB=90,阴影部分面积为: = =6-,故选C【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答8、D【解析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确故选D【详解】请在此输入详解!9、A【解析】根据“用一根绳子去量一根木头的长、绳子
13、还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决【详解】由题意可得,故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组10、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.二、填空题(共7小题,每小题3分,满分21分)11、【解析】科学记数法的表示形式为ax10n的形式,其中1lal1时,n是正
14、数;当原数的绝对值1时,n是负数.【详解】解:0.0000872=故答案为:【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.12、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大13、1【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则SBOC=SAOC,再利用反比例函数k的几何意义得到SAOC=3,则易得
15、SABC=1【详解】双曲线y=与正比例函数y=kx的图象交于A,B两点,点A与点B关于原点对称,SBOC=SAOC,SAOC=1=3,SABC=2SAOC=1故答案为114、【解析】分析:由正方形的性质得到EDG=90,从而KDC+HDA=90,再由C+KDC=90,得到C=HDA,即有CKDDHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论详解:DEFG是正方形,EDG=90,KDC+HDA=90C+KDC=90,C=HDACKD=DHA=90,CKDDHA,CK:KD=HD:HA,CK:100=100:15,解得:CK=故答案为:点睛:本题考查了相似三角形的应用解题的关
16、键是证明CKDDHA15、【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可【详解】根据图示可得,故答案是:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽16、【解析】试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率阴影部分的面积为:3124=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,这个点取在阴影部分的概率为:6=618=考点:求随机事件的概率17、3n+1【解析】试题分析:由图可知每个
17、图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)【解析】先利用等腰三角形的性质得到,利用切线的性质得,则CEBD,然后证明得到BE=CE;作于F,如图,在RtOBC中利用正弦定义得到BC=5,所以,然后在RtBEF中通过解直角三角形可求出BE的长【详解】证明:,是的切线,平分,;解:作于F,如图,的直径长8,在中,设,则,即,解得,故答案为(1)证明见解析;(2) 【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图
18、,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形19、裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.20、 (1)60人;(2)144;(3)288人.【解析】等级人数除以其所占百分比即可得;先求出A等级
19、对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;总人数乘以A、B等级百分比之和即可得【详解】解:本次被抽取参加英语口语测试的学生共有人;级所占百分比为,级对应的百分比为,则扇形统计图中C级的圆心角度数为;人,答:估计英语口语达到B级以上包括B级的学生人数为288人【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体21、(1)见解析;(2)是7.3米【解析】(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为
20、G,连接AG,与BC交点点D,则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)在ABD中,DB=AD;在ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解【详解】解:(1)如下图,图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)设ADx,在RtABD中,ABD45,BDADx,CD20xtanACD,即tan30,x10
21、(1)7.3(米)答:路灯A离地面的高度AD约是7.3米【点睛】解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可22、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解【详解】解:(
22、1)这次统计共抽查学生2420%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是36054,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用样本估计总体23、
23、(1)10%;(1)会跌破10000元/m1【解析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,14000(1-x)1=11340,(1-x)1=0.81,x1=0.1=10%,x1=1.9(不合题意,舍去)答:
24、11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=113400.81=9184.510000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键24、y=x5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴
25、的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)二次函数y=(x1)24,其伴生一次函数的表达式为y=(x1)4=x5,故答案为y=x5;(2)二次函数y=(x1)24,顶点坐标为(1,4),二次函数y=(x1)24,其伴生一次函数的表达式为y=x5,当x=1时,y=15=4,(1,4)在直线y=x5上,即:二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)二次函数y=m(x1)24m,其伴生一次函数为y=m(x1)4m=mx5m,P点的横坐标为n,(n2),P的纵坐标为m(n1)24m,即:P(n,m(n1)24m),PQx轴,Q(n1)2+1,m(n1)24m),PQ=(n1)2+1n,线段PQ的长为,(n1)2+1n=,n=点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.