《江苏省宜兴市丁蜀区2023届中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宜兴市丁蜀区2023届中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB100米,BC200米为了方便职
2、工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间2如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD3|的倒数是( )A2BCD24在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是( )ABC,D5若分式的值为零,则x的值是( )A1B
3、CD26已知3x+y6,则xy的最大值为()A2B3C4D67下列大学的校徽图案是轴对称图形的是( )ABCD8在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD9如图,直线ykx+b与x轴交于点(4,0),则y0时,x的取值范围是()Ax4Bx0Cx4Dx010比1小2的数是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11因式分解:x210x+24=_12写出一个经过点(1,2)的函数表达式_13已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+
4、bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)14不等式组的解集是_15抛物线 的顶点坐标是_16把多项式3x212因式分解的结果是_17我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-3, 4,-5,6,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 三、解答题(共7小题,满分69分)18(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线19(5分)某数学兴趣小组为测量如图(所示的一
5、段古城墙的高度,设计用平面镜测量的示意图如图所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处 已知ABBD、CDBD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案 要求:面出示意图(不要求写画法);写出方案,给出简要的计算过程:给出的方案不能用到图的方法20(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A由父母一方照看;B由爷爷奶奶照看;C由叔姨等近亲照看;D直接寄宿学校某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并
6、将调查结果制成如下两幅不完整的统计图该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?21(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同(1)若前四局双方战成2:2,那么甲队最终获胜的概率是_;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22(10分)已知,关于x的方程x2+
7、2x-k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2是这个方程的两个实数根,求的值;(3)根据(2)的结果你能得出什么结论?23(12分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,
8、求恰好抽到2名男生的概率24(14分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin280.47,cos280.88,tan280.53)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【详解】解:
9、以点A为停靠点,则所有人的路程的和15100+103001(米),以点B为停靠点,则所有人的路程的和30100+102005000(米),以点C为停靠点,则所有人的路程的和30300+1520012000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)1+5m1,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+15n+10(200n)5000+35n1该停靠点的位置应设在点A;故选A【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短2、A【解析】先在RtAB
10、D中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90,AB=3,AD=4,BD=5,在RtABF中,A=90,AB=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=G
11、BH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键3、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键4、D【解析】根据中位数、众数的定义即可解决问题【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1故选:D【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数
12、的定义,属于中考基础题.5、A【解析】试题解析:分式的值为零,|x|1=0,x+10,解得:x=1故选A6、B【解析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值【详解】解:1x+y=6,y=-1x+6,xy=-1x2+6x=-1(x-1)2+1(x-1)20,-1(x-1)2+11,即xy的最大值为1故选B【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值7、B【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图
13、形,故本选项错误;D、不是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.9、A【解析】试题
14、分析:充分利用图形,直接从图上得出x的取值范围由图可知,当y1时,x-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y1,在x轴上方的部分y110、C【解析】1-2=-1,故选C二、填空题(共7小题,每小题3分,满分21分)11、(x4)(x6)【解析】因为(4)(6)=24,(4)+(6)=10,所以利用十字相乘法分解因式即可.【详解】x210x+24= x210x+(4)(6)=(x4)(x6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.12、y=x+1(答案不唯一)【解析】本题属于结论开放型题型,可以将函数的表达式设计为一次函
15、数、反比例函数、二次函数的表达式答案不唯一【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.13、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,
16、x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答14、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为
17、x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键15、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),故答案为(0,-1).16、3(x+2)(x-2)【解析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x212因式分解先提公因式3,再利用平方差公式因式分解.【详解】3x212=3()=317、2【解析】先求出19行有多少个数,再加3就等于第20行第三个数是多少然后根据奇偶性来决定负正【详解】1行1个数,2行3个数,3行5个数,4行7个数,19行应有219-1=37个数到第19行一共有1+3+5+7+
18、9+37=1919=1第20行第3个数的绝对值是1+3=2又2是偶数,故第20行第3个数是2三、解答题(共7小题,满分69分)18、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):19、(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得 APB=CPD ,由 ABBD、CDBD 可得到 ABP=CDP=90,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得APB=CPD,ABP=CDP=9
19、0,RtABPRtCDP, ,CD=8. 答:该古城墙的高度为8m(2)解:答案不唯一,如:如图, 在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在RtACD中,ACD=90,tan=,AC= tan,AB=AC+BC=tan+h【点睛】本题考查相似三角形性质的应用解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题20、(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,
20、即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益【详解】解:(1)220%10(人),100%360144,故答案为10,144;(2)102422(人),如图所示:(3)240020%96(人),答:估计该校将有96名留守学生在此关爱活动中受益【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示
21、所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22、(1)k-1;(2)2;(3)k-1时,的值与k无关【解析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(
22、2)结论可见,k-1时,的值为定值2,与k无关【详解】(1)方程有两个不等实根,0,即4+4k0,k-1 (2)由根与系数关系可知x1+x2=-2 ,x1x2=-k, (3)由(1)可知,k-1时,的值与k无关【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.23、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率
23、公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.24、5.8【解析】过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可【详解】解:如图,过点作于点,过点作于点, 又, 四边形为矩形 在中, 答:操作平台离地面的高度约为【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算