《江苏省金坛市2023届中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省金坛市2023届中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=2如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D32017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里数字5550用科学记数法表示为( )A0.555104B5.55103C5.55104D55.51034如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是
3、ABCD5观察下列图案,是轴对称而不是中心对称的是()ABCD6在1、1、3、2这四个数中,最大的数是()A1B1C3D27已知a1,点A(x1,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx3x1x2Dx2x3x18下列事件中,必然事件是()A若ab=0,则a=0 B若|a|=4,则a=4C一个多边形的内角和为1000D若两直线被第三条直线所截,则同位角相等9如图是一个由5个相同的正方体组成的立体图形,它的主视图是()ABCD10如图,已知在ABC,ABAC若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正
4、确的是()AAEECBAEBECEBCBACDEBCABE11若 | =,则一定是( )A非正数B正数C非负数D负数12在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_.14若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_15如图所示,点
5、A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 16抛物线y=mx2+2mx+5的对称轴是直线_17已知二次函数f(x)=x2-3x+1,那么f(2)=_18矩形ABCD中,AB=8,AD=6,E为BC边上一点,将ABE沿着AE翻折,点B落在点F处,当EFC为直角三角形时BE=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或
6、演算步骤19(6分)(1)2018+()120(6分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业已知小岛P在A港的北偏东60方向,在B港的北偏西45方向,小岛P距海岸线MN的距离为30海里求AP,BP的长(参考数据:1.4,1.7,2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?21(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如
7、下的统计图和图.请根据相关信息,解答下列问题:()图中的值为 ;()求统计的这组数据的平均数、众数和中位数;() 根据样本数据,估计这2500只鸡中,质量为的约有多少只?22(8分)化简:(x-1- ).23(8分)如图,在ABC中,AB=AC,以AB为直径的O与BC交于点D,过点D作ABD=ADE,交AC于点E(1)求证:DE为O的切线(2)若O的半径为,AD=,求CE的长24(10分)如图,ABC中,D是AB上一点,DEAC于点E,F是AD的中点,FGBC于点G,与DE交于点H,若FG=AF,AG平分CAB,连接GE,GD求证:ECGGHD;25(10分)解方程:(1)x27x180(2)
8、3x(x1)22x26(12分)先化简,再求值:(),其中a=+127(12分)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D(I)如图,若BC为O的直径,求BD、CD的长;(II)如图,若CAB=60,求BD、BC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C2、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=
9、90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5550=5.551故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形
10、式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】如图作,FNAD,交AB于N,交BE于M设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FNAD,交AB于N,交BE于M四边形ABCD是正方形,ABCD,FNAD,四边形ANFD是平行四边形,D=90,四边形ANFD是矩形,AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,AN=BN,MNAE,BM=ME,MN=a,FM=a,AEFM,故选C【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关
11、键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型5、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形这个旋转点,就叫做对称中心6、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于
12、一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小7、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3x1故选B【点睛】此题主要考查一次函数图象与系数的关系,
13、解题关键在于把三点代入,在根据a的大小来判断8、B【解析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=4,是必然事件,故此选项正确;C、一个多边形的内角和为1000,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键9、A【解析】画出从正面看到的图形即可得到它的主视图【详解】这个几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循
14、序渐进,通过仔细观察和想象,再画它的三视图10、C【解析】解:AB=AC,ABC=ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,BE=BC,ACB=BEC,BEC=ABC=ACB,BAC=EBC故选C点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大11、A【解析】根据绝对值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是112、B【解析】根据矩形的面积=长宽
15、,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题详解:从3,1,0,1,3这五个数中随机抽取一个数记为a,再从剩
16、下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是: (3,1)、(3,0)、(3,1)、(3,3)、 (1,3)、(1,0)、(1,1)、(1,3)、 (0,3)、(0,1)、(0,1)、(0,3)、 (1,3)、(1,1)、(1,0)、(1,3)、 (3,3)、(3,1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(3,1),(1,3),(3,1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:故答案为点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能
17、性14、1【解析】试题分析:将x=1代入方程得:13+m+1=0,解得:m=1考点:一元二次方程的解15、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题16、x=1【解析】根据抛物线的对称轴公式可直接得出.【详解】解:这里a=m,b=2m对称轴x=故答案为:x=-1.【点睛】解答本题关键是识记抛物线的对称轴公式x=.17、-1
18、【解析】根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】 f(x)=x2-3x+1 f(2)= 22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.18、3或1【解析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【详解】当CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示连结AC,在RtABC中,AB=1,BC=8,AC= =10,B沿AE折叠,使点B落在点F处,AFE=B=90,当CEF为直角三角形时,只能得到EFC=90,点A、F、C共线,即B沿AE折叠,使点B落在对角线AC
19、上的点F处,如图,EB=EF,AB=AF=1,CF=101=4,设BE=x,则EF=x,CE=8x,在RtCEF中,EF2+CF2=CE2,x2+42=(8x)2,解得x=3,BE=3;当点F落在AD边上时,如图2所示此时ABEF为正方形,BE=AB=1综上所述,BE的长为3或1故答案为3或1【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算
20、,正确化简各数是解题的关键20、(1)AP60海里,BP42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】(1)过点P作PEAB于点E,则有PE=30海里,由题意,可知PAB=30,PBA=45,从而可得 AP60海里,在RtPEB中,利用勾股定理即可求得BP的长; (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PEMN,垂足为E,由题意,得PAB906030,PBA904545,PE30海里,AP60海里,PEMN,PBA45,PBEBPE 45,PEE
21、B30海里,在RtPEB中,BP3042海里,故AP60海里,BP42(海里); (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得,解得x20,经检验,x20是原方程的解,甲船的速度为1.2x1.22024(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.21、()28. ()平均数是1.52. 众数为1.8. 中位数为1.5. ()200只.【解析】分析:()用整体1减去所有已知的百分比即可求出m的值;(
22、)根据众数、中位数、加权平均数的定义计算即可;()用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:()m%=1-22%-10%-8%-32%=28%.故m=28;()观察条形统计图,这组数据的平均数是1.52.在这组数据中,1.8出现了16次,出现的次数最多,这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,这组数据的中位数为1.5.()在所抽取的样本中,质量为的数量占.由样本数据,估计这2500只鸡中,质量为的数量约占.有.这2500只鸡中,质量为的约有200只点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识找中位数
23、要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数22、【解析】根据分式的混合运算先计算括号里的再进行乘除.【详解】(x-1- )=【点睛】此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.23、 (1)证明见解析;(2)CE=1【解析】(1)求出ADO+ADE=90,推DEOD,根据切线的判定推出即可;(2)求出CD,AC的长,证CDECAD,得出比例式,求出结果即可【详解】(1)连接OD,AB是直径,ADB=90,ADO+BDO=90,OB=
24、OD,BDO=ABD,ABD=ADE,ADO+ADE=90,即,ODDE,OD为半径,DE为O的切线;(2)O的半径为,AB=2OA=AC,ADB=90,ADC=90,在RtADC中,由勾股定理得:DC=5,ODE=ADC=90,ODB=ABD=ADE,EDC=ADO,OA=OD,ADO=OAD,AB=AC,ADBC,OAD=CAD,EDC=CAD,C=C,CDECAD,=,=,解得:CE=1【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.24、见解析【解析】依据条件得出C=DHG=90,CGE=GED,依据F是AD的中点,FGAE,即可得到
25、FG是线段ED的垂直平分线,进而得到GE=GD,CGE=GDE,利用AAS即可判定ECGGHD【详解】证明:AF=FG,FAG=FGA,AG 平分CAB,CAG=FAG,CAG=FGA,ACFGDEAC,FGDE,FGBC,DEBC,ACBC,F 是 AD 的中点,FGAE,H 是 ED 的中点FG 是线段 ED 的垂直平分线,GE=GD,GDE=GED,CGE=GDE,ECGGHD(AAS)【点睛】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键25、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方
26、程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键26、,.【解析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题【详解】解: ()=,当a=+1时,原式=【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法27、(1)BD=CD=5;(
27、2)BD=5,BC=5【解析】(1)利用圆周角定理可以判定DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图,连接OB,OD由圆周角定理、角平分线的性质以及等边三角形的判定推知OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)BC是O的直径,CAB=BDC=90AD平分CAB,CD=BD在直角BDC中,BC=10,CD2+BD2=BC2,BD=CD=5,(2)如图,连接OB,OD,OC,AD平分CAB,且CAB=60,DAB=CAB=30,DOB=2DAB=60又OB=OD,OBD是等边三角形,BD=OB=ODO的直径为10,则OB=5,BD=5,AD平分CAB,ODBC,设垂足为E,BE=EC=OBsin60=,BC=5【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型