《安阳市第九中学2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安阳市第九中学2023年中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25105B0.25106C2.5105D2.51062如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD3一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米其中正
3、确的个数有()A1个B2个C3个D4个4黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观其落差约30米,年平均流量1010立方米/秒若以小时作时间单位,则其年平均流量可用科学记数法表示为()A6.06104立方米/时B3.136106立方米/时C3.636106立方米/时D36.36105立方米/时5如图,RtABC中,C=90,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D86二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二
4、、三、四象限D第一、三、四象限7二次函数y=-x2-4x+5的最大值是( )A-7B5C0D98如图,在ABC中,C=90,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B设APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )ABCD9如图,AB是的直径,点C,D在上,若,则的度数为ABCD10下列运算结果正确的是()A(x3x2+x)x=x2x B(a2)a3=a6 C(2x2)3=8x6 D4a2(2a)2=2a2二、填空题(共7小题,每小题3分,满分21分)
5、11如图,在RtABC中,A=90,ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足若DC=2,AD=1,则BE的长为_12如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_13如图,在ABC中,点D、E分别在AB、AC上,且DEBC,已知AD2,DB4,DE1,则BC_14不等式组的解集是 _.15已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.16因式分解:2b2a2a3bab3=_17如果某数的一个平方根是5,那么这个数是_三、解答题(
6、共7小题,满分69分)18(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.19(5分)如图,中,于,为边上一点(1)当时,直接写出,(2)如图1,当,时,连并延长交延长线于,求证:(3)如图2,连交于,当且时,求的值20(8分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值21(10分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩小明和小刚都在本周日上午去游玩的概率为_;求他们三人在同一个半天去游玩的概率22(10分)如图,在RtABC中,C
7、90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2)求图中阴影部分的面积23(12分)如图,抛物线y=x2+bx+c(a0)与x轴交于点A(1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0m3),连结DC并延长至E,使得CE=CD,连结BE,BC(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求BCE的面积最大值24(14分)已知:关于x的一元二次方程kx2(4k+1)x+3k+30(k是整数)(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值参考答案一、选择
8、题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D2、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图3、D【解析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题【详解】由图象可得,
9、出租车的速度为:6006=100千米/时,故(1)正确,客车的速度为:60010=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:603.75=225千米,故(4)正确,故选D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答4、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】101036024=3
10、.636106立方米/时,故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两等圆A,B外切,两圆的半径均为4,A+B=90,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键6、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函
11、数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、二、三象限”是解题的关键7、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键8、D【解析】在ABC中,C=90,AC=BC=3cm,可得AB=,A=B=45,分当0x3(点Q在AC
12、上运动,点P在AB上运动)和当3x6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在ABC中,C=90,AC=BC=3cm,可得AB=,A=B=45,当0x3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QNAB于点N,在等腰直角三角形AQN中,求得QN=x,所以y=(0x3),即当0x3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3x6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QNBC于点N,在等腰直角三角形PQN中,求得QN=(
13、6-x),所以y=(3x6),即当3x6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答9、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.10、C【解析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得【详解】A、(x3-x2+x)x=x2-x+1,此选项计算错误;B、(-a2)a3=-a5,此选项计算错误;
14、C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则二、填空题(共7小题,每小题3分,满分21分)11、 【解析】DE是BC的垂直平分线,DB=DC=2,BD是ABC的平分线,A=90,DEBC,DE=AD=1,BE=,故答案为 点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键12、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E
15、.在直角OCE中, 则AE=OAOE=53=2.故答案为2.13、1【解析】先由DEBC,可证得ADEABC,进而可根据相似三角形得到的比例线段求得BC的长【详解】解:DEBC,ADEABC,DE:BCAD:AB,AD2,DB4,ABAD+BD6,1:BC2:6,BC1,故答案为:1【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形14、x1【解析】解不等式得:x5,解不等式得:x-1所以不等式组的解集是x-1.故答案是:x-1.
16、15、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB,CDE1,ABE2,ABE3,BCE4,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.16、ab(ab)2【解析】首先确定公因式为ab,然后提取公因式整理即可【详解】2b2a2a3bab3=ab(2ab-a2-b2)=ab(ab)2,所以答案为ab(ab)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.17、25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x0),所以x(-5)225.【
17、点睛】本题解题的关键是掌握平方根的定义.三、解答题(共7小题,满分69分)18、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题
18、考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点19、(1),;(2)证明见解析;(3)【解析】(1)利用相似三角形的判定可得,列出比例式即可求出结论;(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作于,根据相似三角形的判定可得,列出比例式可得,设,即可求出x的值,根据平行线分线段成比例定理求出,设,然后根据勾股定理求出AC,即可得出结论【详解】(1)如图1中,当时,故答案为:,(2)如图中,作交
19、于,tanB=,tanACE= tanB=BE=2CE,设,则,(3)如图2中,作于,设,则有,解得或(舍弃),设,在中,【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键20、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键21、(1);(2)【解析】(1)根据题意,画树状图列出三人随
20、机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,他们三人在同一个半天去游玩的概率为=答:他们三人在同一个半天去游玩的概率是【点睛】本题
21、考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件22、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角
22、三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键23、(1)y=x2+2x+1(2)2Ey2(1)当m=1.5时,SBCE有最大值,SBCE的最大值=【解析】分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0m1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)抛物线 过点A(1,0)和B(1,0) (2)点C为线段DE中点设点E(a,b) 0m1, 当m=1时,纵坐标最小值为2 当m=1时,最大值为
23、2点E纵坐标的范围为 (1)连结BD,过点D作x轴的垂线交BC于点HCE=CDH(m,-m+1) 当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.24、(3)证明见解析(3)3或3【解析】(3)根据一元二次方程的定义得k2,再计算判别式得到(3k3)3,然后根据非负数的性质,即k的取值得到2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)=(4k+3)34k(3k+3)=(3k3)3k为整数,(3k3)32,即2方程有两个不相等的实数根(3)解:方程kx3(4k+3)x+3k+3=2为一元二次方程,k2kx3(4k+3)x+3k+3=2,即kx(k+3)(x3)=2,x3=3,方程的两个实数根都是整数,且k为整数,k=3或3【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与的关系是解答此题的关键.