《白山市重点中学2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《白山市重点中学2023年中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A1.35106B1.35105C13.5104D1351032如图1,等边
2、ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形设点I为对称轴的交点,如图2,将这个图形的顶点A与等边DEF的顶点D重合,且ABDE,DE=2,将它沿等边DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A18B27CD453如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD4将一副三角尺(在中,在中,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则
3、的值为( )ABCD5下列运算正确的是()Aa6a3=a2B3a22a=6a3C(3a)2=3a2D2x2x2=16制作一块3m2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A360元B720元C1080元D2160元7将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D458把不等式组的解集表示在数轴上,下列选项正确的是()ABCD9下列计算结果为a6的是()
4、Aa2a3 Ba12a2 C(a2)3 D(a2)310我省2013年的快递业务量为12亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一若2015年的快递业务量达到25亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )A12(1x)25B12(12x)25C12(1x)225D12(1x)12(1x)22511下列计算正确的是( )A B C D12若分式的值为0,则x的值为()A-2B0C2D2二、填空题:(本大题共6个小题,每小题4分,共24分)13边长为3的正方形网格中,O的圆心在格点上,半径为3,则tanAED=
5、_14请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= 15如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是_.16如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)17在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_
6、18如图,已知等边ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知关于x的方程x26mx+9m29=1(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1x2,若x1=2x2,求m的值20(6分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m1623x请写出商场卖这种商品每天的销售利润y(元)与每件销售价x
7、(元)之间的函数关系式商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由21(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了 学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人? 22(8分)已知函数y=(x0)的图象与一次函数y=ax2(a0)的图象交于点A(3,n)(1)求实数a的值;(2)设一次函数y=ax2(a0)的图象与y轴交于点B,若点C在y轴上,且SABC=2SAOB,求点C的坐标
8、23(8分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长24(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?25(10分)在“传箴
9、言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查
10、统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.27(12分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?参考答案一、选择题(本大题共12个小题
11、,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:135000=1.35105故选B【点睛】此题考查科学记数法表示较大的数科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】先判断出莱洛三角形等边DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中
12、,等边DEF的边长为2,等边ABC的边长为3,S矩形AGHF=23=6,由题意知,ABDE,AGAF,BAG=120,S扇形BAG=3,图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6+3)=27;故选B【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边DEF扫过的图形3、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
13、4、C【解析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则ACD=A=30,BCD=B=60,由于EDF=90,可利用互余得CPD=60,再根据旋转的性质得PDM=CDN=,于是可判断PDMCDN,得到=,然后在RtPCD中利用正切的定义得到tanPCD=tan30=,于是可得=【详解】点D为斜边AB的中点,CD=AD=DB,ACD=A=30,BCD=B=60,EDF=90,CPD=60,MPD=NCD,EDF绕点D顺时针方向旋转(060),PDM=CDN=,PDMCDN,=,在RtPCD中,tanPCD=tan30=,=tan30=故选:C【点睛】本题考查了旋转的性质:对应点到旋转
14、中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了相似三角形的判定与性质5、B【解析】A、根据同底数幂的除法法则计算;B、根据同底数幂的乘法法则计算;C、根据积的乘方法则进行计算;D、根据合并同类项法则进行计算.【详解】解:A、a6a3=a3,故原题错误;B、3a22a=6a3,故原题正确;C、(3a)2=9a2,故原题错误;D、2x2x2=x2,故原题错误;故选B【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.6、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的
15、面积,计算即可【详解】3m2m=6m2,长方形广告牌的成本是1206=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,扩大后长方形广告牌的面积=96=54m2,扩大后长方形广告牌的成本是5420=1080元,故选C【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键7、A【解析】试题分析:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选A考点:平行线的性质8、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为x1故选C【点睛】本题考查了不等式问题,在表示解集
16、时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示9、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则10、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C11、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法
17、的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D12、C【解析】由题意可知:,解得:x=2,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据同弧或等弧所对的圆周角相等知AED=ABD,所以tanAED的值就是tanB的值.【详解】解: AED=ABD (同弧所对的圆周角相等),tanAED=tanB=.故答案为:.【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题
18、.14、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2【解析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b215、k且k1【解析】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11又方程是一元二次方程
19、,k1,k-1/4 且k116、【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】四边形ABCD是平行四边形,ABCD,AB=CD,EC垂直平分AB,OA=OB=AB=DC,CDCE,OADC,=,AE=AD,OE=OC,OA=OB,OE=OC,四边形ACBE是平行四边形,ABEC,四边形ACBE是菱形,故正确,DCE=90,DA=AE,AC=AD=AE,ACD=ADC=BAE,故正确,OACD,故错误,设AOF的面积为a,则OFC的面积为2a,CDF的面积为4a,AOC的面积=AOE的面积=1a,四边形AFOE的面积为4a,ODC的面积为6aS
20、四边形AFOE:SCOD=2:1故正确.故答案是:【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.17、20【解析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.18、【解析】由等边三角形的性质证明AEBCFA可以得
21、出APB=120,点P的路径是一段弧,由弧线长公式就可以得出结论【详解】:ABC为等边三角形,AB=AC,C=CAB=60,又AE=CF,在ABE和CAF中, ,ABECAF(SAS),ABE=CAF又APE=BPF=ABP+BAP,APE=BAP+CAF=60APB=180-APE=120当AE=CF时,点P的路径是一段弧,且AOB=120,又AB=6,OA=2,点P的路径是l=,故答案为【点睛】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (
22、1)见解析;(2)m=2【解析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)在方程x26mx+9m29=1中,=(6m)24(9m29)=26m226m2+26=261方程有两个不相等的实数根;(2)关于x的方程:x26mx+9m29=1可化为:x(2m+2)x(2m2)=1,解得:x=2m+2和x=2m-2,2m+22m2,x1x2,x1=2m+2,x2=2m2,又x1=2x2,2m+2=2(2m2)解得:m=2【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实
23、数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x26mx+9m29=1的两个根是解答第2小题的关键.20、(1)y=3x2+252x1(2x54);(2)商场每天销售这种商品的销售利润不能达到500元【解析】(1)此题可以按等量关系“每天的销售利润=(销售价进价)每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案【详解】(1)由题意得:每件商品的销售利润为(x2)元,那么m件的销售利润为y=m(x2)又m=1623
24、x,y=(x2)(1623x),即y=3x2+252x1x20,x2又m0,1623x0,即x54,2x54,所求关系式为y=3x2+252x1(2x54)(2)由(1)得y=3x2+252x1=3(x42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元500432,商场每天销售这种商品的销售利润不能达到500元【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价进价)每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法21、(1)200名;折线图见解析;(2)1210人.【解析】(1)由“其他”的人数和
25、所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答【详解】(1)调查学生总人数为4020%=200(人),体育人数为:20030%=60(人),阅读人数为:200(60+30+20+40)=200150=50(人)补全折线统计图如下:(2)2200=1210(人)答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念22、(1)a=1;(2)C(0,4)或(0,0)
26、【解析】(1)把 A(3,n)代入y=(x0)求得 n 的值,即可得A点坐标, 再把A点坐标代入一次函数 y=ax2 可得 a 的值;(2)先求出一次函数 y=ax2(a0)的图象与 y 轴交点 B 的坐标,再分两种情况(当C点在y轴的正半轴上或原点时;当C点在y轴的负半轴上时)求点C的坐标即可【详解】(1)函数 y=(x0)的图象过(3,n),3n=3,n=1,A(3,1)一次函数 y=ax2(a0)的图象过点 A(3,1),1=3a1, 解得 a=1;(2)一次函数y=ax2(a0)的图象与 y 轴交于点 B,B(0,2),当C点在y轴的正半轴上或原点时, 设 C(0,m),SABC=2S
27、AOB,(m+2)3=23, 解得:m=0,当C点在 y 轴的负半轴上时, 设(0,h),SABC=2SAOB,(2h)3=23, 解得:h=4,C(0,4)或(0,0)【点睛】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解23、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC,AD平分B
28、AC,BAD=BAC,ADB=90,BAD+ABD=90,PBC=BAC,PBC+ABD=90,ABP=90,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:ADBC=BEAC,44=BE10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=BAP,AEB=ABP=90,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键24、(1)100,35;
29、(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)被调查总人数为m=1010%=100人,用支付宝人数所占百分比n%= ,m=100,n=35.(2)网购人数为10015%=15人,微信人数所占百分比为,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为200040%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问
30、题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.25、(1)3,补图详见解析;(2)【解析】(1)总人数=3它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占,故该班团员人数为:(人),则发4条箴言的人数为:(人),所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题
31、关键26、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:解:(1)本次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小27、规定日期是6天【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得 解方程可得x=6,经检验x=6是分式方程的解答:规定日期是6天