四川省南充营山县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:87995973 上传时间:2023-04-19 格式:DOC 页数:17 大小:810.50KB
返回 下载 相关 举报
四川省南充营山县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共17页
四川省南充营山县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《四川省南充营山县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省南充营山县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法中正确的是( )A检测一批灯泡的使用寿命适宜用普查.B抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.C“367人中有两人是同月同日生”为必然事件.D“多边形内角和与外角和相等”是不可能事件.2共享单车为市民短距离出行带来了极大便利据2017年“深圳

2、互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A259104B25.9105C2.59106D0.2591073如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把ABE沿AE折叠,当点B的对应点B落在ADC的角平分线上时,则点B到BC的距离为( )A1或2B2或3C3或4D4或54|的倒数是( )A2BCD25如图,点D在ABC边延长线上,点O是边AC上一个动点,过O作直线EFBC,交BCA的平分线于点F,交BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A2A

3、CE=BAC+BBEF=2OCCFCE=90D四边形AFCE是矩形6过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()ABCD7若 | =,则一定是( )A非正数B正数C非负数D负数8四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )AB1CD9如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D610如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图是一位同学设计的用

4、手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得AB2米,BP3米,PD15米,那么该古城墙的高度CD是_米1227的立方根为 13某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_m114在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_环的成绩15计算:_.16垫球是

5、排球队常规训练的重要项目之一如图所示的数据是运动员张华十次垫球测试的成绩测试规则为每次连续接球10个,每垫球到位1个记1分则运动员张华测试成绩的众数是_17将半径为5,圆心角为144的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 三、解答题(共7小题,满分69分)18(10分)如图,点B、E、C、F在同一条直线上,ABDE,ACDF,BECF,求证:ABDE19(5分)如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的表达式;(2)当点P位

6、于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使PDF与ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由20(8分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC求证:1=2;连结BE、DE,判断四边形BCDE的形状,并说明理由.21(10分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率22(10分)某体育用品商场预测

7、某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?23(12分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围24(14分)

8、如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是

9、可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.2、C【解析】绝对值大于1的正数可以科学计数法,a10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.3、A【解析】连接BD,过点B作BMAD于M设DM=BM=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B到BC的距离【详解】解:如图,连接BD,过点B作BM

10、AD于M,点B的对应点B落在ADC的角平分线上,设DM=BM=x,则AM=7x,又由折叠的性质知AB=AB=5,在直角AMB中,由勾股定理得到:,即,解得x=3或x=4,则点B到BC的距离为2或1故选A【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键4、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键5、D【解析】依据三角形外角性质,角平分线的定义,以及平行线的性质,

11、即可得到2ACE=BAC+B,EF=2OC,FCE=90,进而得到结论【详解】解:ACD是ABC的外角,ACD=BAC+B,CE平分DCA,ACD=2ACE,2ACE=BAC+B,故A选项正确;EFBC,CF平分BCA,BCF=CFE,BCF=ACF,ACF=EFC,OF=OC,同理可得OE=OC,EF=2OC,故B选项正确;CF平分BCA,CE平分ACD,ECF=ACE+ACF=180=90,故C选项正确;O不一定是AC的中点,四边形AECF不一定是平行四边形,四边形AFCE不一定是矩形,故D选项错误,故选D【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质6、B【解析】试题解

12、析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.7、A【解析】根据绝对值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是18、A【解析】在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.9、A【解析】作于利用直

13、角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型10、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1故选A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图二、填空题(共7小题,每小题3分,满分21分)11、10【解析】首先证明ABPCDP,可得=,再代入相应数据可得答案【详解】如图,由题意可得:APE=CPE,APB=CPD,ABBD,CDBD,

14、ABP=CDP=90,ABPCDP,=,AB=2米,BP=3米,PD=15米,=,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.12、1【解析】找到立方等于27的数即可解:11=27,27的立方根是1,故答案为1考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算13、150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为14、8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环

15、数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+21089解之,得x7x表示环数,故x为正整数且x7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”不等式,再由不等式的相关知识确定问题的答案.15、5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.16、1【解析】根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案【详解】运动员张华测试成绩的众数是1

16、故答案为1【点睛】本题主要考查了众数,关键是掌握众数定义17、1【解析】考点:圆锥的计算分析:求得扇形的弧长,除以1即为圆锥的底面半径解:扇形的弧长为:=4;这个圆锥的底面半径为:41=1点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长三、解答题(共7小题,满分69分)18、详见解析.【解析】试题分析:利用SSS证明ABCDEF,根据全等三角形的性质可得B=DEF,再由平行线的判定即可得ABDE试题解析:证明:由BECF可得BCEF,又ABDE,ACDF,故ABCDEF(SSS),则B=DEF,ABDE考点:全等三角形的判定与性质.19、 (1) yx23x+4

17、;(2)当时,S有最大值;(3)点P的横坐标为2或1或或.【解析】(1)将代入,列方程组求出b、c的值即可;(2)连接PD,作轴交于点G,求出直线的解析式为,设,则,当时,S有最大值;(3)过点P作轴,设,则,根据,列出关于x的方程,解之即可【详解】解:(1)将、代入, ,二次函数的表达式;(2)连接,作轴交于点,如图所示在中,令y0,得,直线AD的解析式为设,则,当时,S有最大值(3)过点P作轴,设,则,即 ,当点P在y轴右侧时,或,(舍去)或(舍去),当点P在y轴左侧时,x0,或,(舍去),或(舍去), 综上所述,存在点F,使与互余点P的横坐标为或或或【点睛】本题是二次函数,熟练掌握相似三

18、角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键20、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】(1)证明ADCABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可【详解】解:(1)证明:在ADC和ABC中,ADCABC(SSS).1=2.(2)四边形BCDE是菱形,理由如下:如答图,1=2,DC=BC,AC垂直平分BD.OE=OC,四边形DEBC是平行四边形.ACBD,四边形DEBC是菱形【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形

19、的判定21、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.22、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y元,根据“这

20、两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.【详解】(1)设商场第一次购进x套运动服,由题意得解这个方程,得经检验,是所列方程的根答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得,解这个不等式,得答:每套运动服的售价至少是200元【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.23、(1)(2)【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标

21、,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,点A的坐标为(0,2) 1分,抛物线的对称轴为直线,顶点B的坐标为(1,) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图

22、,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.24、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁