2023届四川省乐山市峨眉山市初中数学毕业考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:87791710 上传时间:2023-04-17 格式:DOC 页数:18 大小:547.50KB
返回 下载 相关 举报
2023届四川省乐山市峨眉山市初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
2023届四川省乐山市峨眉山市初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届四川省乐山市峨眉山市初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省乐山市峨眉山市初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命

2、中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD2如图所示几何体的主视图是( )ABCD3某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861044一组数据:6,3,4,5,7的平均数和中位数分别是 ( )A5,5B5,6C6,5D6,65如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,

3、连接BM,若SAMB2,则k的值是()A1B2C3D46若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )A90 B120 C150 D1807如图,是的直径,是的弦,连接,则与的数量关系为( )ABCD8如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD9用配方法解方程时,可将方程变形为( )ABCD10下列图形不是正方体展开图的是()ABCD11被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A25104

4、m2B0.25106m2C2.5105m2D2.5106m212如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40,则BAC= .14从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是_15某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是

5、_16如图,将AOB绕点按逆时针方向旋转后得到,若,则的度数是 _17在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_18如图,AB为O的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,再求值:(m+2),其中m=20(6分)如图,在ABC中,AB=AC,D为BC的中点,DEAB,DFAC,垂足分别为E、F,求证:DE=DF21(6分)如图1,已知直线y=kx与抛物线y=交于点A

6、(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?22(8分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90,点E在AB上,求证:CDA

7、CEB23(8分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长24(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率25(10分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,

8、且CBF=CAB(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=,求BC和BF的长26(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示当10x60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;若两次购买鞋子共花费9200元,求第一次的购买数量;如何规划两次购买的方案,使所花费用最少,最少多少元?27(12分)

9、水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图所示的试验,并根据试验数据绘制出图所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升? 图 图参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定是0.822,故错

10、误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.2、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图3、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要

11、考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键4、A【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答平均数为:(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1故选A考点:中位数;算术平均数.5、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,

12、则k1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点6、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2r,设正圆锥的侧面展开图的圆心角是n,则=2r,解得:n=180故选D考点:圆锥的计算7、C【解析】首先根据圆周角定理可知B=C,再根据直径所得的圆周角是直角可得ADB=90,然后根据三角形的内角和定理可得DAB+B=90,所以得到DAB+C=90,从而得到结果.【详解】解:是的直径,ADB=90.DAB+B=90.B=C,DAB

13、+C=90.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.8、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的

14、P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A9、D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.10、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.11、C

15、【解析】科学记数法的表示形式为a10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:250000 m2=2.5105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键12、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13

16、、20【解析】根据切线的性质可知PAC90,由切线长定理得PAPB,P40,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90PA,PB是O的切线,PAPBP40,PAB(180P)2(18040)270,BACPACPAB907020故答案为20【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数14、【解析】根据合数定义,用合数的个数除以数的总数即为所求的概率【详解】在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,这个数恰好是合数的概率是故答案为:【点睛】本题考查了概率的求法如果一个事件有n种可

17、能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键15、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16、60【解析】根据题意可得,根据已知条件计算即可.【详解】根据题意可得: , 故答案为60【点睛】本题主要考查旋转角的有关计算,关键在于识别那个是旋转角.17、(-1, -6)【解

18、析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数18、1【解析】解:连接OC,AB为O的直径,ABCD,CE=DE=CD=6=3,设O的半径为xcm,则OC=xcm,OE=OBBE=x1

19、,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=1,O的半径为1,故答案为1【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2(-+3)=-120、答案见解析【解析】由于AB=AC,那么B=C,而DEAC,DFAB可知BFD=CED=90,又D是BC中点,可知BD=CD,利用AAS可证BFD

20、CED,从而有DE=DF21、(1)y=2x,OA=,(2)是一个定值,(3)当时,E点只有1个,当时,E点有2个。【解析】(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2xOA=(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理可得如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点RAOD=BAE,A

21、F=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED.设OE=x,则AE=x (),由ABEOED得,()顶点为(,)如答图3,当时,OE=x=,

22、此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个当时,E点有2个22、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形23、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在

23、RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】

24、此题主要考查圆的切线问题,解题的关键是熟知切线的性质.24、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是25、(1)证明见解析;(2)BC=;. 【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角

25、三角形两锐角相等得到直角,从而证明ABF=90(2)利用已知条件证得AGCABF,利用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90,1+2=90AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90即ABF=90AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90,AB=5,BE=ABsin1=,AB=AC,AEB=90,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=

26、BF=26、(1)y150x; (2)第一批购买数量为30双或40双第一次买26双,第二次买74双最省钱,最少9144元【解析】(1)若购买x双(10x1),每件的单价140(购买数量10),依此可得y关于x的函数关系式;(2)设第一批购买x双,则第二批购买(100x)双,根据购买两批鞋子一共花了9200元列出方程求解即可分两种情况考虑:当25x40时,则1100x75;当40x1时,则40100x1把两次的花费与第一次购买的双数用函数表示出来【详解】解:(1)购买x双(10x1)时,y140(x10)150x故y关于x的函数关系式是y150x;(2)设第一批购买x双,则第二批购买(100x)

27、双当25x40时,则1100x75,则x(150x)+80(100x)9200,解得x130,x240;当40x1时,则40100x1,则x(150x)+(100x)150(100x)9200,解得x30或x70,但40x1,所以无解;答:第一批购买数量为30双或40双设第一次购买x双,则第二次购买(100x)双,设两次花费w元当25x40时wx(150x)+80(100x)(x35)2+9225,x26时,w有最小值,最小值为9144元;当40x1时,wx(150x)+(100x)150(100x)2(x50)2+10000,x41或59时,w有最小值,最小值为9838元,综上所述:第一次买

28、26双,第二次买74双最省钱,最少9144元【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解27、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为Wkt0.3. 又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k0.30.9,解得k0.4.故W与t之间的函数关系式为W0.4t0.3.当t24时,W0.4240.39.9(L),9.90.39.6(L),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁