广东省河源市市级名校2023届中考猜题数学试卷含解析.doc

上传人:lil****205 文档编号:87994311 上传时间:2023-04-19 格式:DOC 页数:19 大小:820.50KB
返回 下载 相关 举报
广东省河源市市级名校2023届中考猜题数学试卷含解析.doc_第1页
第1页 / 共19页
广东省河源市市级名校2023届中考猜题数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《广东省河源市市级名校2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省河源市市级名校2023届中考猜题数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D52如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,

2、则AEGF的值为( )A1BCD3如图,能判定EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC4如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已知P40,则ACB的大小是( )A60B65C70D755 “车辆随机到达一个路口,遇到红灯”这个事件是( )A不可能事件B不确定事件C确定事件D必然事件6已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x01B0x01且x0Cx00或x01D0x017如图,一把带有60角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边

3、和平行线成45角,则三角尺斜边的长度为()A12cmB12cmC24cmD24cm8已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断9如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A()B()C()D()10如图,在RtABC中,C=90, BE平分ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )ABC6D411ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是

4、()A13,5B6.5,3C5,2D6.5,212把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)2二、填空题:(本大题共6个小题,每小题4分,共24分)13若一个多边形的内角和为1080,则这个多边形的边数为_14在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:两人相遇前,甲的速度小于乙的速度;出发后1小时,两人行程均为10km;出发后1.5小时,甲的行程比乙多3km;甲比乙先到达终点其中正确的有_个15已知数据x1,x2,xn的平均数是,则一组新数据x1

5、+8,x2+8,xn+8的平均数是_.16如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D17如图,在平行四边形 ABCD 中,AB6,AD9,BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BGAE,垂足为 G,BG4,则CEF 的周长为_18在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:AC=5;A+C=180o;ACBD;AC=BD其中正确的有_(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为

6、,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号)20(6分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离AD为1.5米,求小巷有多宽21(6分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF22(8分)如图,在一次测量活动中,小华站在离旗杆底部(B

7、处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出旗杆AB的高度(结果精确到0.1米,).23(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价)小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?24(10分)如

8、图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证: .图1 图225(10分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?26(12分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1 的解析式(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若CPD 为等腰直角

9、三角形,求出 D 点坐标27(12分)在正方形ABCD中,AB4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PMPB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PMPB的长度最小值约为_cm.

10、参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B2、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形A

11、BCD是矩形,BAD=D=90,CD=AB,AG平分BAD,DAG=45,ADG是等腰直角三角形,DG=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B

12、、A=EBD不能判断出EBAC,故本选项错误;C、A=ABE,根据内错角相等,两直线平行,可以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行4、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90,根据四边形AOBP的内角和定理可得AOB=140,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=1402=70.考点:切线的性质、三角形外角

13、的性质、圆的基本性质.5、B【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+1,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小

14、,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏7、D【解析】过A作ADBF于D,根据45角的三角函数值可求出AB的长度,根据含30角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作ADBF于D,ABD=45,AD=12,=12,又RtABC中,C=30,AC=2AB=24,故选:D【点睛】本题考查解直角三角形,在直角三角形中,30角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.8、

15、B【解析】比较OP与半径的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.9、A【解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=90,1=2=1,则A1OMOC1N,OA=5,OC=1,OA1=5,A1M=1,OM=4,设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=(负数舍去),则NO=,NC1=,故点C

16、的对应点C1的坐标为:(-,)故选A【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键10、C【解析】由角平分线的定义得到CBE=ABE,再根据线段的垂直平分线的性质得到EA=EB,则A=ABE,可得CBE=30,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC【详解】解:BE平分ABC,CBE=ABE,ED垂直平分AB于D,EA=EB,A=ABE,CBE=30,BE=2EC,即AE=2EC,而AE+EC=AC=9,AE=1故选C11、D【解析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆

17、半径为,【详解】解:如下图,ABC的三条边长分别是5,13,12,且52+122=132,ABC是直角三角形,其斜边为外切圆直径,外切圆半径=6.5,内切圆半径=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.12、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据多边形内角和定理:(n2)11

18、0 (n3)可得方程110(x2)1010,再解方程即可【详解】解:设多边形边数有x条,由题意得:110(x2)1010,解得:x1,故答案为:1【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)110 (n3)14、1【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故错误;由图可得,两人在1小时时相遇,行程均为10km,故正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故正确;甲到达终点所用的时间较

19、少,因此甲比乙先到达终点,故正确15、【解析】根据数据x1,x2,xn的平均数为=(x1+x2+xn),即可求出数据x1+1,x2+1,xn+1的平均数【详解】数据x1+1,x2+1,xn+1的平均数=(x1+1+x2+1+xn+1)=(x1+x2+xn)+1=+1故答案为+1【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标16、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角,DAO=DEADAODEA即AE=AD故选D17、8【解析】试

20、题解析:在ABCD中,AB=CD=6,AD=BC=9,BAD的平分线交BC于点E,BAF=DAF,ABDF,BAF=F,F=DAF,ADF是等腰三角形,AD=DF=9;ADBC,EFC是等腰三角形,且FC=CEEC=FC=9-6=3,AB=BE在ABG中,BGAE,AB=6,BG=4可得:AG=2,又BGAE,AE=2AG=4,ABE的周长等于16,又ABCD,CEFBEA,相似比为1:2,CEF的周长为818、【解析】由当ABCD的面积最大时,ABBC,可判定ABCD是矩形,由矩形的性质,可得正确,错误,又由勾股定理求得AC=1【详解】当ABCD的面积最大时,ABBC,ABCD是矩形,A=C

21、=90,AC=BD,故错误,正确;A+C=180;故正确;AC=1,故正确故答案为:【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理注意证得ABCD是矩形是解此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】过点C作CDAB,由CBD45知BDCDx,由ACD30知ADx,根据AD+BDAB列方程求解可得【详解】解:过点C作CDAB于点D, 设CDx,CBD45,BDCDx,在RtACD中,ADx,由AD+BDAB可得x+x10,解得:x55,答:飞机飞行的高度为(55)km20、2.7米【解析】先根据勾股定理求出AB的长,

22、同理可得出BD的长,进而可得出结论【详解】在RtACB中,ACB90,BC0.7米,AC2.2米,AB20.72+2.226.1在RtABD中,ADB90,AD1.5米,BD2+AD2AB2,BD2+1.526.1,BD22BD0,BD2米CDBC+BD0.7+22.7米答:小巷的宽度CD为2.7米【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用21、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,

23、过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=CBD,EF垂直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(ASA),DE=BF考点:1作图基本作图;2线段垂直平分线的性质;3矩形的性质22、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.23、(1)x

24、=1,y=;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组(2)根据里程数和时间来计算总费用试题解析:(1)由题意得,解得;(2)小华的里程数是11km,时间为14min则总费用是:11x+14y=11+7=18(元)答:总费用是18元24、(1)详见解析;(1)详见解析;(3)详见解析.【解析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,可得S1S1=abBECF,由(1)得BDECFD,即BEFC=

25、BDCD=ab,即可推出S1S1=a1b1;(3)想办法证明DFECFD,推出,即DF1=EFFC;【详解】(1)证明:如图1中,在BDE中,BDE+DEB+B=180,又BDE+EDF+FDC=180,BDE+DEB+B=BDE+EDF+FDC,EDF=B,DEB=FDC,又B=C,BDECFD(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,S1S1=abBECF由(1)得BDECFD,即BEFC=BDCD=ab,S1S1=a1b1(3)由(1)得BDECFD,又BD=CD,又EDF=C=60,DFECFD

26、,即DF1=EFFC【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.25、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时

27、,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质26、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a(-3)1解得a=1,解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1Hx轴,CPD为等腰

28、直角三角形,OPCHD1P,PH=OC=3,HD1=OP=1,D1(4,-1)过点D2Fy轴,同理OPCFCD2,FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3CD3,且PD3=CD3,PC=,PD3=CD3=故D3 ( 2,- 2 ) D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.27、(1)2.1;(2)见解析;(3)x2时,函数有最小值y4.2【解析】(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值【详解】(1)当点P运动到点H时,AH=3,作HNAB于点N在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,HAN=42,AN=HN=AHsin42=3,HM,HB,HM+HN=2.122+2.8342.1故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2故答案为:4.2【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁