广东省珠海市达标名校2023届中考猜题数学试卷含解析.doc

上传人:lil****205 文档编号:87993415 上传时间:2023-04-19 格式:DOC 页数:19 大小:908.50KB
返回 下载 相关 举报
广东省珠海市达标名校2023届中考猜题数学试卷含解析.doc_第1页
第1页 / 共19页
广东省珠海市达标名校2023届中考猜题数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《广东省珠海市达标名校2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省珠海市达标名校2023届中考猜题数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()ABCD2在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是(3,0),在y轴的正半轴上取一点

2、C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A(0,)B(,0)C(0,2)D(2,0)3下列几何体是棱锥的是( )ABCD4下列各点中,在二次函数的图象上的是( )ABCD5如图,将一块含有30角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果1=30,那么2的度数为( )A30B40C50D606下列说法正确的是( )A一个游戏的中奖概率是则做10次这样的游戏一定会中奖B为了解全国中学生的心理健康情况,应该采用普查的方式C一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D若甲组数据的方差 S= 0.01 ,乙组数据的方差

3、 s 0 .1 ,则乙组数据比甲组数据稳定7如图,在ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A2B3C4D68如图,在ABC中,B90,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD9如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D2110关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D

4、-二、填空题(共7小题,每小题3分,满分21分)11关于的分式方程的解为正数,则的取值范围是_12同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 13方程的解是_14如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_.15如图,线段AB两端点坐标分别为A(1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标_16化简_17因式分解:_.三、解答题(共7

5、小题,满分69分)18(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图和图.请根据相关信息,解答下列问题:()图中的值为 ;()求统计的这组数据的平均数、众数和中位数;() 根据样本数据,估计这2500只鸡中,质量为的约有多少只?19(5分)如图,已知:AB是O的直径,点C在O上,CD是O的切线,ADCD于点D,E是AB延长线上一点,CE交O于点F,连接OC、AC(1)求证:AC平分DAO(2)若DAO=105,E=30求OCE的度数;若O的半径为2,求线段EF的长20(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象

6、交于A(1,a)、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积21(10分)如图,BC是路边坡角为30,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37和60(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37060,cos370.80,tan370.75)22(10分)阅读材料,解答问题材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(3,9)开始,

7、按点的横坐标依次增加1的规律,在抛物线yx2上向右跳动,得到点P2、P3、P4、P5(如图1所示)过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)2(9+4)1(4+1)1,即P1P2P3的面积为1”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线yx2改为抛物线yx2+bx+c,其它条件不变,猜想四

8、边形Pn1PnPn+1Pn+2的面积(直接写出答案)23(12分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由24(14分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划

9、分为区域(菱形),区域(4个全等的直角三角形),剩余空白部分记为区域;点为矩形和菱形的对称中心,为了美观,要求区域的面积不超过矩形面积的,若设米.甲乙丙单价(元/米2)(1)当时,求区域的面积.计划在区域,分别铺设甲,乙两款不同的深色瓷砖,区域铺设丙款白色瓷砖,在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时_,_.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据左视图是从物体的左面看得到

10、的视图解答即可【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图2、A【解析】直接根据AOCCOB得出OC2=OAOB,即可求出OC的长,即可得出C点坐标【详解】如图,连结AC,CB.依AOCCOB的结论可得:OC2=OAOB,即OC2=13=3,解得:OC=或 (负数舍去),故C点的坐标为(0, ).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.3、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D

11、是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.4、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式5、D【解析】如图,因为,1=30,1+3=60,所以3=30,因为ADBC,所以3=4,所以4=30,所以2=180-90-30=60,故选D.6、C【解析】众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也

12、不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.7、B【解析】根据三角形的中位线等于第三边的一半进行计算即可【详解】D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=6,DE=BC=1故选B【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用8、C【解析】根据题意表示出PBQ的面积S与t的关系式,进而得出答

13、案【详解】由题意可得:PB3t,BQ2t,则PBQ的面积SPBBQ(3t)2tt2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选C【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键9、A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选:A【点睛】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是

14、解决问题的关键10、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小二、填空题(共7小题,每小题3分,满分21分)11、且.【解析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,分式方程的解为正数,x=m-20且x-10,即m-20且m-2-10,m2且m1,故答案为m2

15、且m112、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表

16、法与树状图法13、x=-2【解析】方程两边同时平方得:,解得:,检验:(1)当x=3时,方程左边=-3,右边=3,左边右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.14、【解析】试题分析:上方的正六边形涂红色的概率是,故答案为考点:概率公式15、或【解析】分点A的对应点为C或D两种情况考虑:当点A的对应点为点C

17、时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解【详解】当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:点的坐标为,B点的坐标为,点的坐标为;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:点的坐标为,B点的坐标为,点的坐标为综上所述:这个旋转中心的坐标为或故答案为或【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键16、【解析】

18、根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解:法一、=(- ) = = 2-m故答案为:2-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律17、【解析】分析:先提公因式,再利用平方差公式因式分解即可详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为:(a-b)(a-2)(a+2)点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键三、解答题(共7小题,满分69分)18、()28. ()平均数是1.52.

19、众数为1.8. 中位数为1.5. ()200只.【解析】分析:()用整体1减去所有已知的百分比即可求出m的值;()根据众数、中位数、加权平均数的定义计算即可;()用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:()m%=1-22%-10%-8%-32%=28%.故m=28;()观察条形统计图,这组数据的平均数是1.52.在这组数据中,1.8出现了16次,出现的次数最多,这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,这组数据的中位数为1.5.()在所抽取的样本中,质量为的数量占.由样本数据,估计这2500只鸡中,质量为的数量约占.有.这2500

20、只鸡中,质量为的约有200只点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数19、(1)证明见解析;(2)OCE=45;EF =-2.【解析】【试题分析】(1)根据直线与O相切的性质,得OCCD. 又因为ADCD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD/OC. DAC=OCA.又因为OC=OA,根据等边对等角,得OAC=OCA.等量代换得:DAC=OAC.根据

21、角平分线的定义得:AC平分DAO.(2)因为 AD/OC,DAO=105,根据两直线平行,同位角相等得,EOC=DAO=105,在 中,E=30,利用内角和定理,得:OCE=45. 作OGCE于点G,根据垂径定理可得FG=CG, 因为OC=,OCE=45.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在RtOGE中,E=30,得GE=, 则EF=GE-FG=-2.【试题解析】(1)直线与O相切,OCCD. 又ADCD,AD/OC. DAC=OCA.又OC=OA,OAC=OCA.DAC=OAC.AC平分DAO.(2)解:AD/OC,DAO=105,EOC=DAO=105E=30

22、,OCE=45. 作OGCE于点G,可得FG=CG OC=,OCE=45.CG=OG=2.FG=2. 在RtOGE中,E=30,GE=.EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20、(1),;(2)P,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的

23、坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,

24、1),点D的坐标为(3,- 1)设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=1-(-1)(3-1)-1-(-1)(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题21、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)

25、如图,延长DC交AN于H,DBH=60,DHB=90,BDH=30,CBH=30,CBD=BDC=30,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22、 (1)2,2;(2)2,理由见解析;(3)2【解析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P

26、1H1H2P2和SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,将四边形面积转化为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2来解答【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P2SOP1H1SOP3H3S梯形P2H

27、2H3P3S梯形P1H1H2P22,SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P32;(2)作Pn1Hn1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn1、Hn、Hn+1、Hn+2,由图可知Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,四边形Pn1PnPn+1Pn+2的面积为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯

28、形Pn3Hn3Hn2Pn22;(3)S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2=-2【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,23、(1);(2)详见解析;(3)为定值,=【解析】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),由AOEOBF,可得到,然后

29、表示出直线AB的解析式即可得到结论;(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 由PQON,可得ON=amt+at2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),解之得 ,;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),OAOB,AOE=OBF,AOEOBF,直线AB过点A(m,am2)、点B(n,an2),过点(0,);(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2

30、+c=0, c= at2 PQON,ON=at(m+t)= amt+at2,同理:OM= amt+at2,所以,OM+ON= 2at2=2c=OC,所以,=.【点睛】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.24、(1)8m2;(2)68m2;(3) 40,8【解析】(1)根据中心对称图形性质和,可得,即可解当时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,求出自变量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.【详解】(1) 为长方形和菱形的对称中心,当时,(2),-, 解不等式组得,结合图像,当时,随的增大而减小.当时, 取得最大值为(3)当时,S=4x2=16 m2,=12 m2,=68m2,总费用:162m+125n+682m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁