《2023届广东省河源市和平县市级名校中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省河源市和平县市级名校中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)2如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的长是(
2、 )A2B4CD23李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,求证:证明:又,ABCD4对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D11455如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1y2时()A1xlB0x1或x1C1xI且x0D1x0或x16在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A13.51106
3、B1.351107C1.351106D0.15311087已知,则的值是A60B64C66D728如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,9如图,将一块含有30角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果1=30,那么2的度数为( )A30B40C50D6010如图,ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点C1处B点C2处C点C3处D点C4处二、填空题(共7小题,每小
4、题3分,满分21分)11计算:_12已知,则=_13如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_14关于的分式方程的解为负数,则的取值范围是_.15如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 16已知函数y=|x2x2|,直线y=kx+4恰好与y=|x2x2|的图象只有三个交点,则k的值为_17下列说法正确的是_(请直接填写序号)“若ab,则”是真命题六边形的内角和是其外角和的2倍函数y= 的自变量的取值范围是x1三角形的中位线平行于第三边,并且等于第三边的一半正方形既是轴对
5、称图形,又是中心对称图形三、解答题(共7小题,满分69分)18(10分)李宁准备完成题目;解二元一次方程组,发现系数“”印刷不清楚他把“”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“”是几?19(5分)先化简,再求代数式()的值,其中x=sin60,y=tan3020(8分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.21(10分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DEAM于点E求证:ADEMAB;求DE的长22(10分
6、)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如A
7、FB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)23(12分)解不等式组,并将解集在数轴上表示出来24(14分)如图,在ABC中,点D在边BC上,联结AD,ADB=CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DEDF(1)求证:BFDCAD;(2)求证:BFDE=ABAD参考答案一、选择题(每小题
8、只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.2、D【解析】连接CO,由直径AB平分弦CD及垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与D
9、OB互余,A+COB=90,又COB=2A,A=30,COE=60,OCE=30,设OE=x,则CO=2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.3、B【解析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,又,故选B【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似4、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题为1145故选:D【点
10、睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键5、B【解析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1)由图象可以直接写出当y1y2时所对应的x的取值范围【详解】根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,1),当y1y2时,, 0x1或x-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.6、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351107.故选择B.【点睛】本题主要考查科学记数法,科学记
11、数法表示数的标准形式是a10n(1a10且n为整数).7、A【解析】将代入原式,计算可得【详解】解:当时,原式,故选A【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式8、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知
12、是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D9、D【解析】如图,因为,1=30,1+3=60,所以3=30,因为ADBC,所以3=4,所以4=30,所以2=180-90-30=60,故选D.10、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.二、填空题(共7小题,每小题3分,满分21分)11、【解析】先把化简为2,再合并同类二次根式即可得解.【详解】2-=.故答案为.【点睛】本题考查了二次根式的运算,正确对二次根
13、式进行化简是关键12、【解析】由可知值,再将化为的形式进行求解即可.【详解】解:,原式=.【点睛】本题考查了分式的化简求值.13、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.14、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a0,且1-a-1解得:a1且a2,故答案为: a1且a2
14、【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析15、.【解析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,BODCOD60,所以,三角形OCD为等边三角形,所以,半圆O的半径为OCCD2,S扇形OBDC,SOBC,S弓形CDS扇形ODCSODC,所以阴影部分的面积为为S().考点:扇形的面积计算.16、11或1【解析】直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条
15、件【详解】解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=-x1+x+1(-1x1),当直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,=(k-1)1-8=0,解得k=11 ,所以k的值为1+1或1-1当k=1+1时,经检验,切点横坐标为x=-1不符合题意,舍去当y=kx+
16、4过(1,0)时,k=-1,也满足条件,故答案为1-1或-1【点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1x1上时的解析式。17、【解析】根据不等式的性质可确定的对错,根据多边形的内外角和可确定的对错,根据函数自变量的取值范围可确定的对错,根据三角形中位线的性质可确定的对错,根据正方形的性质可确定的对错.【详解】“若ab,当c0时,则,故是假命题;六边形的内角和是其外角和的2倍,根据真命题;函数y=的自变量的取值范围是x1且x0,故是假命题;三角形的中位线平行于第三边,并且等于第
17、三边的一半,故是真命题;正方形既是轴对称图形,又是中心对称图形,故是真命题;故答案为【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.三、解答题(共7小题,满分69分)18、(1);(2)-1【解析】(1)+得出4x=-4,求出x,把x的值代入求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入求出答案即可【详解】解:(1)+得,.将时代入得,.(2)设“”为a,x、y是一对相反数,把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是,代入ax+y=
18、-8得:2a-2=-8,解得:a=-1,即原题中“”是-1【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键19、【解析】先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可【详解】原式 原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.20、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【
19、点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键21、(1)证明见解析;(2). 【解析】试题分析:利用矩形角相等的性质证明DAEAMB.试题解析:(1)证明:四边形ABCD是矩形,ADBC,DAE=AMB,又DEA=B=90,DAEAMB.(2)由(1)知DAEAMB,DE:AD=AB:AM,M是边BC的中点,BC=6,BM=3,又AB=4,B=90,AM=5,DE:6=4:5,DE=22、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45,BAD=90,点D关
20、于直线AE的对称点为点F,即可证明出DBF=90,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90,设BAF=n,FAD=90+n,可得出FGD=360FADAFGADG=360(90+n)(180n)=90,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=902=901,DAF=2DAM=18021,再根据菱形的性质可得ADB=ABD=,
21、故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=360,2DFG+21+21=180,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,BAD=BAF=90,F=ADB=45,ABF=ABD=45,DBF=90,GFGD,BAD=BAF=90,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+F
22、DG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90,设BAF=n,FAD=90+n,AF=AD=AB,FAD=ABF,AFB+ABF=180n,AFB+ADG=180n,FGD=360FADAFGADG=360(90+n)(180n)=90,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180FGD)=45,四边形ABCD是正方形,BC=CD,BCD=90,BDC=DBC=(180BCD)=45,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45=,在RtBDC中,sinDBC=sin
23、45=,BDFCDG,FDB=GDC,DGC=DFG=45,DGC=FDG,CGDF;(4)90,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90,DAM=FAM,DAM=902=901,DAF=2DAM=18021,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=3602DFG+21+21=180,DFG=90【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练
24、的掌握正方形、菱形、相似三角形的性质.23、原不等式组的解集为4x1,在数轴上表示见解析【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式,得x4,解不等式,得x1,把不等式的解集在数轴上表示如图,原不等式组的解集为4x1点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键24、见解析【解析】试题分析:(1), ,可得 ,从而得,再根据BDF=CDA 即可证;(2)由 ,可得,从而可得,再由,可得从而得,继而可得 ,得到试题解析:(1), , ,又ADB=CDE ,ADB+ADF=CDE+ADF,即BDF=CDA ,;(2) , , , 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.