《2023届湖南省祁阳县重点中学中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省祁阳县重点中学中考数学全真模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD2已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使
2、这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D13已知x=2是关于x的一元二次方程x2x2a=0的一个解,则a的值为()A0B1C1D24如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD5计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy6甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C仅有D仅有7如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律
3、,最后一个三角形中y与n之间的关系是()Ay=2n+1By=2n+nCy=2n+1+nDy=2n+n+18已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:当的条件下,无论取何值,点是一个定点;当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;的最小值不大于;若,则.其中正确的结论有( )个.A1个B2个C3个D4个9如图,已知直线,点E,F分别在、上,如果B40,那么( )A20B40C60D8010在数轴上表示不等式2(1x)4的解集,正确的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11计算5个数据的方差时,得s2(5)2+(8)2+(7)2
4、+(4)2+(6)2,则的值为_12在数轴上,点A和点B分别表示数a和b,且在原点的两侧,若=2016,AO=2BO,则a+b=_13如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m水面下降2.5m,水面宽度增加_m14如图,点A,B在反比例函数y(x0)的图象上,点C,D在反比例函数y(k0)的图象上,ACBDy轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为_15如图,是用火柴棒拼成的图形,则第n个图形需_根火柴棒16高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两
5、个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是_.17小明把一副含45,30的直角三角板如图摆放,其中CF90,A45,D30,则+等于_三、解答题(共7小题,满分69分)18(10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各进多少盏(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式(3)若
6、商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元19(5分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?20(8分)解不等式组并写出它的整数解21(10分)如图,一次函数y=x+的图象与反比例函数y=(k0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积
7、为1(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标22(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值23(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;
8、购买A种树木3棵,B种树木1棵,共需380元(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用24(14分)(1)计算:()3()34cos30+;(2)解方程:x(x4)=2x8参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义
9、得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解
10、题的关键.2、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d4+7或d11或d两圆半径的和;(1)两圆内含,此时圆心距0时,抛物线开口向上;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有1个交点;= b1-4ac=0时,抛物线与x轴有1个交点;= b1-4ac0时,函数在x= -b/1a处取得最小值f(-b/1a)=4ac-b1/4a;在x|x-b/1a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b1/4a相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a0).9、C【解析】根据平行线的性质,可
11、得的度数,再根据以及平行线的性质,即可得出的度数【详解】,故选C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等10、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据平均数的定义计算即可【
12、详解】解: 故答案为1【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.12、-672或672【解析】 ,a-b=2016, AO=2BO,A和点B分别在原点的两侧a=-2b. 当a-b=2016时,-2b-b=2016,解得:b=-672.a=2(-672)=1342,a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, a+b=672,故答案为:672或672.13、1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB
13、,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=3,13-4=1,所以水面下降1.5m,水面宽度增加1米故答案为1【点睛】本题考查了二次函数的应用,根据
14、已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型14、1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换SOACSCOMSAOM,SABDS梯形AMNDS梯形AAMNB进而求解【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y(x0)的图象上,点A,B的横坐标分别为1,2,A(1,1),B(2,),ACBDy轴,C(1,k),D(2,),OAC与ABD的面积之和为,SABDS梯形AMNDS梯形AAMNB,k1,故答案为1【点睛】本题考查反
15、比例函数的性质,k的几何意义能够将三角形面积进行合理的转换是解题的关键15、2n+1【解析】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n1)=2n+1故答案为:2n+116、B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比
16、,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题17、210【解析】根据三角形内角和定理得到B45,E60,根据三角形的外角的性质计算即可【详解】解:如图:CF90,A45,D30,B45,E60,2+3120,+A+1+4+BA+B+2+390+120210,故答案为:210【点睛】本题考查的是三角形的外角的性质、三角
17、形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键三、解答题(共7小题,满分69分)18、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元【解析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值【详解】解:(1
18、)设商场应购进A型台灯x盏,则B型台灯为(100x)盏,根据题意得,30x+50(100x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(4530)m+(7050)(100m),=15m+200020m,=5m+2000,即P=5m+2000,(3)B型台灯的进货数量不超过A型台灯数量的4倍,100m4m,m20,k=50,P随m的增大而减小,m=20时,P取得最大值,为520+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元【点睛】本题
19、考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.19、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(31+43+52+61+71+81+101)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员统一的销售标准应是5万元理由如下:若规定平
20、均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.20、不等式组的解集是5x1,整数解是6,1【解析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】解得:x5,解不等式得:x1,不等式组的解集是5x1,不等式组的整数解是6,1【点睛】本题考查求一元一次不等式组,解题的关键是掌
21、握求一元一次不等式组的方法21、(1) (2)(0,)【解析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A,连接AB,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值AB的长;利用待定系数法求出直线AB的解析式,得到它与y轴的交点,即点P的坐标【详解】(1)反比例函数 y= =(k0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M, |k|=1,k0,k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A,连接 AB,交 y 轴于点 P,则 PA+PB 最小由,解
22、得,或,A(1,2),B(4,),A(1,2),最小值 AB= =,设直线 AB 的解析式为 y=mx+n,则 ,解得,直线 AB 的解析式为 y= ,x=0 时,y= ,P 点坐标为(0,)【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键22、(1)300米/分;(2)y=300x+3000;(3)分【解析】(1)由图象看出所需时间再根据路程时间=速度算出小张骑自行车的速度(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.
23、(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得: 解得: 小张停留后再出发时y与x之间的函数表达式; (3)小李骑摩托车所用的时间: C(6,0),D(9,2400),同理得:CD的解析式为:y=800x4800,则 答:小张与小李相遇时x的值是分【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.23、 (1) A种树每棵2元,B种树每棵80元;(2)
24、当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元【解析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得 ,解得 ,答:A种树木每棵2元,B种树木每棵80元(2)设购买A种树木x棵,则B种树木(2x)棵
25、,则x3(2x)解得x1又2x0,解得x21x2设实际付款总额是y元,则y0.92x80(2x)即y18x7 3180,y随x增大而增大,当x1时,y最小为1817 38 550(元)答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元24、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8()4+1=81+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.