《福建省闽侯县重点中学2023届中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省闽侯县重点中学2023届中考数学全真模拟试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.52研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )A0.156105B0.156105C1.56106D1.561063对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D4已知A(,),B(2,)两点在双曲线上,且,则m的取值范围是( )ABCD5能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da6若一组数据2,3,5,
3、7的众数为7,则这组数据的中位数为( )A2B3C5D77计算的结果是( )ABCD28计算(xl)(x2)的结果为( )Ax22Bx23x2Cx23x3Dx22x29小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()ABCD10如图,将ABC绕点A逆时针旋转一定角度,得到ADE,若CAE=65,E=70,且ADBC,BAC的度数为( )A60 B75C85D9011点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转12抛物线yx22x3的对称轴是( )A直线x
4、1B直线x1C直线x2D直线x2二、填空题:(本大题共6个小题,每小题4分,共24分)13关于x的方程(m5)x23x1=0有两个实数根,则m满足_14如图,在RtACB中,ACB=90,A=25,D是AB上一点,将RtABC沿CD折叠,使点B落在AC边上的B处,则ADB等于_15我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-3, 4,-5,6,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 16如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(2,4),点M,N
5、分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿OAB路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿OCBA路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t0),OMN的面积为S则:AB的长是_,BC的长是_,当t3时,S的值是_17如图,点G是ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将ADG绕点D旋转180得到BDE,ABC的面积=_cm118A、B两地相距20km,甲乙两人沿同一条路线从A地到B地甲先出发,匀速行驶,甲出发1小时后乙再出
6、发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_小时后和乙相遇三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值20(6分)用A4纸复印文件,在甲复印店不管一次复印多
7、少页,每页收费0.1元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理由21(6分)已知:如图1在RtABC中,C=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2
8、cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;若不存在,请说明理由22(8分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且
9、当综合评价得分大于或等于80分时,该生综合评价为A等(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?23(8分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由24(10分)计算:(-)-2 2()+ 25(10分
10、)在ABC中,AB=ACBC,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开始研究,当=90,=30时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90,=30以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 26(12
11、分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积27(12分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68试根据以上数据求出潜艇C离开海平面的下潜深度(结果保留整数参考数据:sin680.9,cos680.4,tan682.5, 1.7)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:作OHBC于H,首先证明BOC=120,在R
12、tBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线2、C【解析】解:,故选C.3、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视
13、率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查4、D【解析】A(,),B(2,)两点在双曲线上,根据点在曲线上,点的坐标满足方程的关系,得.,解得.故选D.【详解】请在此输入详解!5、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“
14、对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.6、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.7、C【解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=32=3=.故选C.【点睛】本题主要考查二次根式的化简
15、以及二次根式的混合运算.8、B【解析】根据多项式的乘法法则计算即可.【详解】(xl)(x2)= x22xx2= x23x2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.9、A【解析】密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),当他忘记了末位数字时,要一次能打开的概率是.故选A.10、C【解析】试题分析:根据旋转的性质知,EAC=BAD=65,C=E=70如图,设ADBC于点F则AFB=90,在RtABF中,B=90-BAD=25,在ABC中,B
16、AC=180-B-C=180-25-70=85,即BAC的度数为85故选C考点: 旋转的性质.11、C【解析】分析:根据旋转的定义得到即可详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角12、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、m
17、且m1【解析】根据一元二次方程的定义和判别式的意义得到m10且 然后求出两个不等式的公共部分即可【详解】解:根据题意得m10且解得且m1故答案为: 且m1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根14、40【解析】将RtABC沿CD折叠,使点B落在AC边上的B处,ACD=BCD,CDB=CDB,ACB=90,A=25,ACD=BCD=45,B=9025=65,BDC=BDC=1804565=70,ADB=1807070=40故答案为4015、2【解析
18、】先求出19行有多少个数,再加3就等于第20行第三个数是多少然后根据奇偶性来决定负正【详解】1行1个数,2行3个数,3行5个数,4行7个数,19行应有219-1=37个数到第19行一共有1+3+5+7+9+37=1919=1第20行第3个数的绝对值是1+3=2又2是偶数,故第20行第3个数是216、10, 1, 1 【解析】作CDx轴于D,CEOB于E,由勾股定理得出AB10,OC1,求出BEOBOE4,得出OEBE,由线段垂直平分线的性质得出BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,由三角形面积公式即可得出OMN的面积【详解】解:作CDx轴于D,CEOB于E,如
19、图所示:由题意得:OA1,OB8,AOB90,AB10;点C的坐标(2,4),OC1,OE4,BEOBOE4,OEBE,BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,OMN的面积S341;故答案为:10,1,1【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键17、18【解析】三角形的重心是三条中线的交点,根据中线的性质,SACD=SBCD;再利用勾股定理逆定理证明BGCE,从而得出BCD的高,可求BCD的面积【详解】点G是ABC的重心, GB=3,EG=GC=4,BE=GA=5,即BGCE,CD为AB
20、C的中线, 故答案为:18.【点睛】考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.18、【解析】由图象得出解析式后联立方程组解答即可【详解】由图象可得:y甲=4t(0t5);y乙=;由方程组,解得t=故答案为【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,
21、由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数
22、图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论详解:(1)y=ax22amx+am2+2m2=a(xm)2+2m2,抛物线的顶点坐标为(m,2m2),故答案为(m,2m2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,ABx轴,且AB=1,点B的坐标为(m+2,1a+2m2),ABC=132,设BD=t,则CD=t,点C的坐标为(m+2+t,1a+2m2t),点C在抛物线y=a(xm)2+2m2上,1a+2m2t=a(2+t)2+2m2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=;(3)ABC
23、的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m2分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m211m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m2m2m2,即2m2时,有2m2=2,解得:m=;当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m220m+60=0,解得:m3=102(舍去),m1=10+2综上所述:m的值为或10+2点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式
24、;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m2及m2三种情况考虑20、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断【详解】解:(1)当x=10时,甲复印店收费为:0,110=1;乙复印店收费为:0.1210=
25、1.2;当x=30时,甲复印店收费为:0,130=3;乙复印店收费为:0.1220+0.0910=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x0);y2=;(3)顾客在乙复印店复印花费少;当x70时,y1=0.1x,y2=0.09x+0.6,设y=y1y2,y1y2=0.1x(0.09x+0.6)=0.01x0.6,设y=0.01x0.6,由0.010,则y随x的增大而增大,当x=70时,y=0.1x70时,y0.1,y1y2,当x70时,顾客在乙复印店复印花费少【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键21、(1)当t=时,PQBC;(2)
26、(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3
27、)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题22、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试
28、成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:807080%=24,2420%=120100,故不可能(3)设平时成绩为满分,即100分,综合成绩为10020%=20,设测试成绩为a分,根据题意可得:20+80%a80,解得:a1答:他的测试成绩应该至少为1分考点:一元一次不等式的应用;二元一次方程组的应用23、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围
29、成的矩形花圃面积不能达到172m1【解析】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,根据题意得:x(311x)=116,解得:x1=7,x1=9,311x=18或311x=14,假设成立,即长为18米、宽为7米或长为14米、宽为9米(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,根据题意得:y(361y)=172,整理得:y11
30、8y+85=2=(18)14185=162,该方程无解,假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m124、0【解析】本题涉及负指数幂、二次根式化简和绝对值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式.【点睛】本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.25、(1)DBC是等边三角形,ADB=30(1)ADB=30;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当
31、60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当060时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90,ABC=45,DBC=30,ABD=ABCDBC=15,在ABD和ABD中,ABDABD,ABD=ABD=15,ADB=A
32、DB,DBC=ABD+ABC=60,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(1)DBCABC,60110,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180)=90,ABD=ABCDBC=90,同(1)可证ABDABD,ABD=ABD=90,BD=BD,ADB=ADBDBC=ABD+ABC=90+90=180(+),+=110,DBC=60,由(1)可知,ADBADC,ADB=ADC,AD
33、B=BDC=30,ADB=30(3)第情况:当60110时,如图31,由(1)知,ADB=30,作AEBD,在RtADE中,ADB=30,AD=1,DE=,BCD是等边三角形,BD=BC=7,BD=BD=7,BE=BDDE=7;第情况:当060时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180)=90,ABD=DBCABC=(90),同(1)可证ABDABD,ABD=ABD=(90),BD=BD,ADB=ADB,DBC=ABCABD=90(90)=180(+),DB=DC,BDC=60同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360,A
34、DB=ADB=150,在RtADE中,ADE=30,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型26、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,
35、再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题27、潜艇C离开海平面的下潜深度约为30
36、8米【解析】试题分析:过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在RtACD中表示出CD和在RtBCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解试题解析:过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:ACD=30,BCD=68,设AD=x,则BD=BA+AD=1000+x,在RtACD中,CD= = = 在RtBCD中,BD=CDtan68,325+x= tan68解得:x100米,潜艇C离开海平面的下潜深度为100米点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解视频