2023届陕西省西安交通大附属中学中考四模数学试题含解析.doc

上传人:lil****205 文档编号:87839392 上传时间:2023-04-18 格式:DOC 页数:15 大小:708KB
返回 下载 相关 举报
2023届陕西省西安交通大附属中学中考四模数学试题含解析.doc_第1页
第1页 / 共15页
2023届陕西省西安交通大附属中学中考四模数学试题含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2023届陕西省西安交通大附属中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省西安交通大附属中学中考四模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列分式是最简分式的是( )ABCD2下列计算结果为a6的是()Aa2a3 Ba12a2 C(a2)3 D(a2)33下列运算正确的是()A(a2)4=a6Ba2a3=a6CD4化简的结果是( )ABCD2(x1)5叶绿体是植物进行光合作用的场所,

2、叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D501036方程x24x+50根的情况是()A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根7如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD8已知关于x的方程2x+a-9=0的解是x=2,则a的值为A2B3C4D59如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A2B2C3D10

3、如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )AadbcBa+c+2b+dCa+b+14c+dDa+db+c二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:x2y-4y3=_.12二次函数y=(a-1)x2-x+a2-1的图象经过原点,则a的值为_13如图,已知正方形ABCD的边长为4,B的半径为2,点P是B上的一个动点,则PDPC的最大值为_14从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_15如图,直线,点A1坐标为(1,0

4、),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按照此做法进行下去,点A8的坐标为_16如图,数轴上不同三点对应的数分别为,其中,则点表示的数是_三、解答题(共8题,共72分)17(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室

5、温为20,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0x8和8xa时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水18(8分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程

6、为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?19(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?20(8分)计算: + 2018021(8分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原

7、计划提前1周完成求该工程队原计划每周修建多少米?22(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.23(12分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能

8、卖出?(精确到0.01元)24先化简,再求值:(),其中a=+1参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键2、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【

9、点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则3、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.4、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键5、C【解析】绝对值小于

10、1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.6、D【解析】解: a=1,b=4,c=5,=b24ac=(4)2415=40,所以原方程没有实数根7、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,

11、得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度8、D【解析】方程2x+a9=0的解是x=2,22+a9=0,解得a=1故选D9、A【解析】连接BD,交AC于O,正方形ABCD,OD=OB,ACBD,D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),此时PD+

12、PE最小,此时PD+PE=BE,正方形的面积是12,等边三角形ABE,BE=AB=,即最小值是2,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置10、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论【详解】解:依题意,得:ba+1,ca+7,da+1A、ada(a+1)1,bca+1(a+7)6,adbc,选项A符合题意;B、a+c+2a+(a+7)+22a+9,b+da+1+(a+1)2a+9,a+c+2b+d,选项B不符合题意;C、a+b+14a+(a+

13、1)+142a+15,c+da+7+(a+1)2a+15,a+b+14c+d,选项C不符合题意;D、a+da+(a+1)2a+1,b+ca+1+(a+7)2a+1,a+db+c,选项D不符合题意故选:A【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、y(x+2y)(x-2y)【解析】首先提公因式,再利用平方差进行分解即可【详解】原式故答案是:y(x+2y)(x-2y)【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解

14、12、-1【解析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值【详解】解:二次函数y=(a-1)x2-x+a2-1 的图象经过原点, a2-1=2, a=1, a-12, a1, a的值为-1 故答案为-1【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=213、1【解析】分析: 由PDPCPDPGDG,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1详解: 在BC上取一点G,使得BG1,如图,PBGPBC,PBGCBP,PGPC,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1故答案为1点睛: 本题考查圆综合题、正方形的性质

15、、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题14、.【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.15、(128,0)【解析】点A1坐标为(1,0),且B1A1x轴,B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函

16、数值就可以求出xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3,从而寻找出点A2、A3的坐标规律,最后求出A8的坐标【详解】点坐标为(1,0),轴点的横坐标为1,且点在直线上在中由勾股定理,得,在中, .故答案为 .【点睛】本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.16、1【解析】根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解【详解】数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,b=3+(-4)=-1,|b|=|c|,c=1故答

17、案为1【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标三、解答题(共8题,共72分)17、(1)当0x8时,y=10x+20;当8xa时,y=;(2)40;(3)要在7:508:10时间段内接水【解析】(1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,即可求得k1、b的值,从而得一次函数的解析式;当8xa时,设y,将(8,100)的坐标代入y,求得k2的值,即可得反比例函数的解析式;(2)把y20代入反比例函数的解析式,即可求得a值;(3)把y40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 的开水,结合函数图象求得

18、x的取值范围,从而求得李老师接水的时间范围【详解】解: (1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,可求得k110,b20当0x8时,y10x20.当8xa时,设y,将(8,100)的坐标代入y,得k2800当8xa时,y.综上,当0x8时,y10x20;当8xa时,y(2)将y20代入y,解得x40,即a40.(3)当y40时,x20要想喝到不低于40 的开水,x需满足8x20,即李老师要在7:38到7:50之间接水【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值

19、范围的划分,既要科学合理,又要符合实际18、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、

20、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式19、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)2110%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1答:应从甲抽调1名学生到丙组(1)直接根据条形统计

21、图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解20、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.21、该工程队原计划每周修建5米【解析】找出等量关系是工作时间工作总量工作效率,可根据实际施工用的时间+1周原计划用的时间,来列方程求解【详解】设该工程队原计划每周修建x米由题意得:+1整理得:x2+x322解得:x15,x26(不合题意舍去)经

22、检验:x5是原方程的解答:该工程队原计划每周修建5米【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键本题用到的等量关系为:工作时间工作总量工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解22、(1)答案见解析;(2).【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)1025%=40(人),获一等奖人数:40-8-6-12-10

23、=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4=1(人),八年级获一等奖人数:4=1(人), 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1 、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.23、至少涨到每股6.1元时才能卖出.【解析】根据关系式:总售价-两次交易费总成本+1000列出不等式求解即可【详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)0.5%5000+1000, 解这个不等式得x,即x6.1 答:至少涨到每股6.1元时才能卖出【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费总成本+1000”列出不等关系式24、,.【解析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题【详解】解: ()=,当a=+1时,原式=【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁