《2022-2023学年安徽省池州市高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省池州市高考数学倒计时模拟卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD2已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若
2、弦的长为,则( )A2或B3或C4或D5或3为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位4设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD5函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 6已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1C3D47已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)
3、内的概率为( )(附:若随机变量服从正态分布,则,)A4.56%B13.59%C27.18%D31.74%8曲线上任意一点处的切线斜率的最小值为( )A3B2CD19已知实数、满足约束条件,则的最大值为( )ABCD10直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为ABCD11已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D1112我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”如图就是一重卦在所有重卦中随机取一重卦,则该重卦
4、至少有2个阳爻的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.14已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当轴,点的横坐标是 15已知集合,则_.16随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生
5、的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分) 选修4-4:极坐标与参数方程 在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值18(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲
6、线上,求的最小值及此时点的坐标.19(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,()求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;()商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)()求的分布列;()若,求的数学期望的最大值.20(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,
7、求的取值范围;若不存在,说明理由.21(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.22(10分)已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正方体将三视图还原,观察可得最长棱为
8、AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.2、C【解析】先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.3、D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换4、B【解析】由
9、题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.5、D【解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果6、C【解析】由线面垂直的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和
10、转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.7、B【解析】试题分析
11、:由题意故选B考点:正态分布8、A【解析】根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.9、C【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合
12、思想,应用意识,属于中档题.10、D【解析】设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值【详解】设,联立,得则,则由,得 设,则 ,则点到直线的距离从而令 当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.11、B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的
13、最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.12、C【解析】利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.二、填空题:本题共4小题,每小题
14、5分,共20分。13、(1),;(2),.【解析】(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.14、【解析】通过设出A点坐标,可得C点坐标,通过轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于轴,故,代入,可得,即,由于在线段上,故
15、,即,解得.15、【解析】由集合和集合求出交集即可.【详解】解:集合,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.16、3000【解析】根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.【详解】解:全市30000名高中男生的身高(单位:)服从正态分布,且,则,该市身高高于的高中男生人数大约为.故答案为:.【点睛】本题考查正态曲线的对称性的应用,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 的极坐标方程为.曲线的直角坐标方程为. (2) 【解析】(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直
16、角坐标方程;(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,则 ,其中为锐角,且满足,当时,取最大值,此时, 【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.18、(1);(
17、2)最小值为,此时【解析】(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,是最小值,此时,所以,所求最小值为,此时【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.19、()0.288()()见解析()数学期望的最大值为280【解析】()根据题意,设购买
18、该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;()()依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;()由题意知,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:()设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.()()依题意,的取值为200,250,300,350,400,的分布列为:2002503003504000.16(),由题意知,又,即,解得,当时,的最大值为280,所以的数学
19、期望的最大值为280.【点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.20、(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围试题解析:(1)设,1分令,得递增;令,得递减,1分,即,3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为15分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立 ,6分设,令,得递增;令,得递减,当即时,4故当时
20、,对恒成立,8分当即时,在上递减,故当时,对恒成立10分若对恒成立,则,11分由及得,故存在实数,使得对恒成立,且的取值范围为11分考点:导数应用.【思路点睛】本题考查了函数恒成立问题;利用导数来判断函数的单调性,进一步求最值;属于难题本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理也可构造新函数然后利用导数来求解.注意利用
21、数形结合的数学思想方法.21、(1);(2)或【解析】(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.【详解】解:(1)由题意知.,直线的方程为直线与椭圆的另一个交点的横坐标为解得或(舍去),椭圆的方程为(2)设.点为的重心,点在圆上,由得 ,代入方程,得,即由得解得.或【点睛】
22、本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.22、(1);(2)见解析【解析】(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果 ;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由, 记,由,且时,单调递减,时,单调递增, 由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为, 记,则,因为,所以,所以时,单调递减,时,单调递增, 所以,即函数的极大值不小于1. 解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为, 因为,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.