云南省昭通市昭阳区建飞中学2022-2023学年高考数学倒计时模拟卷含解析.doc

上传人:茅**** 文档编号:87837617 上传时间:2023-04-18 格式:DOC 页数:18 大小:1.75MB
返回 下载 相关 举报
云南省昭通市昭阳区建飞中学2022-2023学年高考数学倒计时模拟卷含解析.doc_第1页
第1页 / 共18页
云南省昭通市昭阳区建飞中学2022-2023学年高考数学倒计时模拟卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《云南省昭通市昭阳区建飞中学2022-2023学年高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省昭通市昭阳区建飞中学2022-2023学年高考数学倒计时模拟卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16).则首项为2,某一项为2020的超级斐波那契数列的个数为( )A3B4C5D62集合的真子集的个数为( )A7B8C31D323中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取

3、不同的“两音”,则含有打击乐器的概率为( )ABCD4已知下列命题:“”的否定是“”;已知为两个命题,若“”为假命题,则“”为真命题;“”是“”的充分不必要条件;“若,则且”的逆否命题为真命题.其中真命题的序号为( )ABCD5设,则,三数的大小关系是ABCD6已知偶函数在区间内单调递减,则,满足( )ABCD7对于函数,若满足,则称为函数的一对“线性对称点”若实数与和与为函数的两对“线性对称点”,则的最大值为( )ABCD8如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于轴, 则的周长的取值范围是( )ABCD9已知函数,若,则a的取值范围为( )ABCD10已

4、知命题:,则为( )A,B,C,D,11已知倾斜角为的直线与直线垂直,则( )ABCD12阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD二、填空题:本题共4小题,每小题5分,共20分。13已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_14在的展开式中,的系数为_用数字作答15连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为_16设为正实数,若则的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)每年的寒冷天气都会带热“御寒经济”,以交通

5、业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);日平均气温()642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线

6、的斜率和截距的最小二乘法估计分别为:18(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,求实数的取值范围.19(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.20(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点 (1)求证:平面; (2)求二面角的正切值21(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.22(10分)已知等比数列,其

7、公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.2、A【解析】计算,再计算真子集个数得到答案.【详解】,故真子集个数为

8、:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.3、B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.4、B【解析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则

9、且”是假命题,则它的逆否命题为假命题,错误.故选:B【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础5、C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.6、D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系

10、的传递,属于中档题.7、D【解析】根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.8、B【解析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为

11、,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.9、C【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式【详解】由得,在时,是增函数,是增函数,是增函数,是增函数,由得,解得故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解10、C【解析】根据全称量词命题的否定是存在量词命题,即得答

12、案.【详解】全称量词命题的否定是存在量词命题,且命题:,.故选:.【点睛】本题考查含有一个量词的命题的否定,属于基础题.11、D【解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.12、D【解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【

13、点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需

14、要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.14、1【解析】利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具15、【解析】连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.16、【解析】根

15、据,可得,进而,有,而,令,得到,再用导数法求解,【详解】因为,所以,所以,所以,所以,令,所以,当时,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:【点睛】本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),232;(2)【解析】(1) 根据公式代入求解;(2) 先列出基本事件空间,再列出要求的事件,最后求概率即可.【详解】解:(1)由表格可求出代入公式求出,所以,所以当时,.所以可预测日平均气温为时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于的三天分别为,另

16、外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,所以所求概率,即恰有1天网约订单数不低于20份的概率为.【点睛】考查线性回归系数的求法以及古典概型求概率的方法,中档题.18、(1);(2)【解析】(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.【详解】(1)由题得,因为在点与相切所以,(2)由得,令,只需,设(),当时,在时为增函数,所以,舍;当时,开口向上,对称轴为,所以在时为增函数,所以,舍;当时,二次函数

17、开口向下,且,所以在时有一个零点,在时,在时,当即时,在小于零,所以在时为减函数,所以,符合题意;当即时,在大于零,所以在时为增函数,所以,舍.综上所述:实数的取值范围为【点睛】本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值19、(1)或(2)证明见解析【解析】(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【详解】(1)当时,恒成立,解得

18、;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【点睛】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.20、 (1)见证明;(2) 【解析】(1)取PD中点G,可证EFGA是平行四边形,从而, 得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得【详解】(1)证明:取PD中点G,连结为的中位线,且, 又且,且,EFGA是平行四边形,则, 又面,面, 面; (2)解:取AD中点O,连结PO, 面面,为正三角形,面,且, 连交于,可得,则,即 连,

19、又,可得平面,则, 即是二面角的平面角, 在中,即二面角的正切值为【点睛】本题考查线面平行证明,考查求二面角求二面角的步骤是一作二证三计算即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算21、(1)详见解析;(2).【解析】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.22、 () .() .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁