《2022-2023学年云南省曲靖市宜良县第一中学高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省曲靖市宜良县第一中学高考数学倒计时模拟卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等比数列满足,则( )ABCD2已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为(
2、 )ABCD3的展开式中有理项有( )A项B项C项D项4若各项均为正数的等比数列满足,则公比( )A1B2C3D45对于函数,若满足,则称为函数的一对“线性对称点”若实数与和与为函数的两对“线性对称点”,则的最大值为( )ABCD6函数的图像大致为( ).ABCD 7如图,长方体中,点T在棱上,若平面.则( )A1BC2D8若实数满足的约束条件,则的取值范围是( )ABCD9公差不为零的等差数列an中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列an的公差等于( )A1B2C3D410是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11从集合中随机选取
3、一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD12执行下面的程序框图,则输出的值为 ( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知是函数的极大值点,则的取值范围是_14定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是_.15设向量,且,则_.16如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为_.三、解答题:共70分。解答应写出文字说明、证
4、明过程或演算步骤。17(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.18(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.()若,求曲线的方程;()如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;()对于()中的曲线,若直线过点交曲线于点,求面积的最大值.19(12分)山东省高考改革试点方案规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成将每门选考
5、科目的考生原始成绩从高到低划分为、共8个等级参照正态分布原则,确定各等级人数所占比例分别为、选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望(附:若随机变量,则,)20(12分)已知函数.()求的值;()若,且,求的值.21(12分)在中,角,所对的边分别是,且.(1)求
6、的值;(2)若,求的取值范围.22(10分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由a1+a3+a5=21得 a3+a5+a7=,选B.2、B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得
7、,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.3、B【解析】由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,当,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.4、C【解析】由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛
8、】本题考查了等比数列基本量的求法,属基础题.5、D【解析】根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.6、A【解析】本题采用排除法: 由排除选项D;根据特殊值排除选项C;由,且无限接近于0时, 排除选项B;【详解】对于选项D:由题意可得, 令函数 ,则,;即.故选项D排除;对于选项C:因为,
9、故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.7、D【解析】根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,点T在棱上,若平面.则,则,所以, 则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.8、B【解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件
10、,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.9、B【解析】设数列的公差为.由,成等比数列,列关于的方程组,即求公差.【详解】设数列的公差为,.成等比数列,解可得.故选:.【点睛】本题考查等差数列基本量的计算,属于基础题.10、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.11、A【解析】设事
11、件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.12、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】方法一:令,则,当,时,单调递减,时,且,在上单调递增,时,且,在上单调递减,是函
12、数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得14、【解析】先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.1
13、5、【解析】根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查计算,属基础题.16、【解析】根据程序框图得到程序功能,结合分段函数进行计算即可.【详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2).【解析】(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出
14、结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论【详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:解不等式,解得.综上可得,的单调增区间为,减区间为;(2)由题易知,因为的一条对称轴是,所以,解得,.又因为,所以,即.因为,所以,则,所以在的值域是.【点睛】本题主要考查三角函数图象变换规律,余弦函数图象的对称性,余弦函数的单调性和值域,属于中档题18、()和.;()证明见解析;().【解析】()由,可得,解出即可;()设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;()由()知,曲线,且,设直线的
15、方程为:,与椭圆方程联立可得: ,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】()由题意:,解得,则曲线的方程为:和.()证明:由题意曲线的渐近线为:,设直线,则联立,得,解得:,又由数形结合知. 设点,则,即点在直线上.()由()知,曲线,点,设直线的方程为:,联立,得:, ,设,面积,令,当且仅当,即时等号成立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.19、()1636人;()见解析【解析】()根据正态
16、曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;()由题意得成绩在区间61,80的概率为,且,由此可得的分布列和数学期望【详解】()因为物理原始成绩,所以所以物理原始成绩在(47,86)的人数为(人)()由题意得,随机抽取1人,其成绩在区间61,80内的概率为所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以 , 所以的分布列为0123所以数学期望【点睛】(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性(2)解答第二问的关键是判断出随机变量服从二
17、项分布,然后可得分布列及其数学期望当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布20、();().【解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题21、 (1);(2)【解析】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果;(2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果.【详解】(1)由正弦定理可
18、得: 即 (2)由(1)知: , ,即的取值范围为【点睛】本题考查解三角形知识的相关应用,涉及到正弦定理边化角的应用、两角和差正弦公式和辅助角公式的应用、与三角函数值域有关的取值范围的求解问题;求解取值范围的关键是能够利用正弦定理将边长的问题转化为三角函数的问题,进而利用正弦型函数值域的求解方法求得结果.22、(1);(2).【解析】(1)根据题意,求得,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;(2)由(1)得,再利用整体代入求出函数的值域.【详解】(1) 因为 , , 所以,所以函数的最小正周期为. (2)因为,所以,所以,故函数在区间上的值域为.【点睛】本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.