《2022-2023学年运城市重点中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年运城市重点中学中考数学模拟预测题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB1,点A在函数y(x0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y(x0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()ABCD2直线AB
2、、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定3如图,点D在ABC的边AC上,要判断ADB与ABC相似,添加一个条件,不正确的是( )AABD=CBADB=ABCCD4小手盖住的点的坐标可能为( )ABCD5甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数如果设甲每小时做x个,那么可列方程为( )ABCD6有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们
3、背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD7已知a1,点A(x1,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx3x1x2Dx2x3x18以坐标原点为圆心,以2个单位为半径画O,下面的点中,在O上的是()A(1,1)B(,)C(1,3)D(1,)9下列调查中适宜采用抽样方式的是()A了解某班每个学生家庭用电数量 B调查你所在学校数学教师的年龄状况C调查神舟飞船各零件的质量 D调查一批显像管的使用寿命10为了大力宣传节约用电,某小区随机抽查了
4、10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A极差是3B众数是4C中位数40D平均数是20.511平面直角坐标系内一点关于原点对称点的坐标是( )ABCD12方程x(x2)x20的两个根为( )A,B,C ,D, 二、填空题:(本大题共6个小题,每小题4分,共24分)13若一元二次方程x22xm=0无实数根,则一次函数y=(m+1)x+m1的图象不经过第_象限14如图,点D、E、F分别位于ABC的三边上,满足DEBC,EFAB,如果AD:DB=3:2,那么BF:FC=_15同时掷两粒骰子,都是六点向上的概率是_
5、16如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形ABCD的边长为_17计算:(2a3)2=_18一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)20(6分)先化简,再求值:,其中x满足x2x1=121(6分)已知:如图,在平面直角坐标
6、系中,O为坐标原点,OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BCAB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD(1)求证:ABCAOD(2)设ACD的面积为,求关于的函数关系式(3)若四边形ABCD恰有一组对边平行,求的值 22(8分)如图,点D为ABC边上一点,请用尺规过点D,作ADE,使点E在AC上,且ADE与ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)23(8分)如图,AB为O的直径,直线BMAB于点B,点C在O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为O的切线交BM于点F(1)求证
7、:CFDF;(2)连接OF,若AB10,BC6,求线段OF的长24(10分)某校组织了一次初三科技小制作比赛,有ABC,D四个班共提供了100件参赛作品. C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 . (1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .25(10分)如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=1
8、2,求四边形ABCD的周长26(12分)如图,已知:AD 和 BC 相交于点 O,A=C,AO=2,BO=4,OC=3,求 OD 的长27(12分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin280.47,cos280.88,tan280.53)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【
9、解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论详解:OB=1,ABOB,点A在函数 (x0)的图象上,k=4,反比例函数的解析式为,O1(3,0),C1O1x轴,当x=3时, P 故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.2、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆
10、的位置关系,关键是根据角平分线的性质解答3、C【解析】由A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用【详解】A是公共角,当ABD=C或ADB=ABC时,ADBABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,ADBABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,A不是夹角,故不能判定ADB与ABC相似,故C错误,符合题意要求,故选C4、B【解析】根据题意,小手
11、盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合故选:B【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)5、A【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.故选A【点睛】本题考查了
12、分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键6、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件7、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3
13、x1故选B【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断8、B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2,因此点在圆外D选项(1,) 到坐标原点的距离为2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.9、D【解析】根据全面调查与抽样调查的特点对各选项进行判断【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用
14、寿命要采用抽样调查故选:D【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度10、C【解析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)2=40,则中位数是40,故本选项正确;D、这组数据的
15、平均数(25+302+404+502+60)10=40.5,故本选项错误;故选:C【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念11、D【解析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:根据关于原点对称的点的坐标的特点, 点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.12、C【解析】根据因式分解法,可得答案【详解】解:因式分解,得(x-2)(x+1)=0,于
16、是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、一【解析】一元二次方程x2-2x-m=0无实数根,=4+4m0,解得m-1,m+10,m-10,一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限故答案是:一14、3:2【解析】因为DEBC,所以,因为EFAB,所以,所以,故答案为: 3:2.15、【解析】同时掷两粒骰子,一共有66=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题
17、考查了概率公式的应用.16、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用
18、相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用17、4a1【解析】根据积的乘方运算法则进行运算即可.【详解】原式 故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.18、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长详解:解方程x2-10x+21=0得x1=3、x2=1,3第三边的边长9,第三边的边长为1这个三角形的周长是3+6+1=2故答案为2点睛:本题考查了解一元二次方程和三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证
19、明过程或演算步骤19、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.20、2【解析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=,x2x2=2,x2=x+2,=221、(1)证明详见解析;(2)S=(m+1)2+(m);(2)2或1【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“H
20、L”证明ABCAOD;(2)过点B作直线BE直线y=m于E,作AFBE于F,如图,证明RtABFRtBCE,利用相似比可得BC=(m+1),再在RtACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明AOBACD,利用相似的性质得,而SAOB=,于是可得S=(m+1)2+(m);(2)作BHy轴于H,如图,分类讨论:当ABCD时,则ACD=CAB,由AOBACD得ACD=AOB,所以CAB=AOB,利用三角函数得到tanAOB=2,tanACB=,所以=2;当ADBC,则5=ACB,由AOBACD得到4=5,则ACB=4,根据三角函数定义得到tan4=,tanACB=,则
21、=,然后分别解关于m的方程即可得到m的值试题解析:(1)证明:A(0,5),B(2,1),AB=5,AB=OA,ABBC,ABC=90,在RtABC和RtAOD中,RtABCRtAOD;(2)解:过点B作直线BE直线y=m于E,作AFBE于F,如图,1+2=90,1+2=90,2=2,RtABFRtBCE,即,BC=(m+1),在RtACB中,AC2=AB2+BC2=25+(m+1)2,ABCAOD,BAC=OAD,即4+OAC=OAC+5,4=5,而AO=AB,AD=AC,AOBACD,=,而SAOB=52=,S=(m+1)2+(m);(2)作BHy轴于H,如图,当ABCD时,则ACD=CA
22、B,而AOBACD,ACD=AOB,CAB=AOB,而tanAOB=2,tanACB=,=2,解得m=1;当ADBC,则5=ACB,而AOBACD,4=5,ACB=4,而tan4=,tanACB=,=,解得m=2综上所述,m的值为2或1考点:相似形综合题22、见解析【解析】以DA为边、点D为顶点在ABC内部作一个角等于B,角的另一边与AC的交点即为所求作的点【详解】解:如图,点E即为所求作的点【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DEBC并熟练掌握做一个角等于已知角的作法式解题的关键23、(1)详见解析;(2)OF【解析】(1)连接OC,如图,根据切线的性质得1+
23、3=90,则可证明3=4,再根据圆周角定理得到ACB=90,然后根据等角的余角相等得到BDC=5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明ABCABD,利用相似比得到AD=,然后证明OF为ABD的中位线,从而根据三角形中位线性质求出OF的长【详解】(1)证明:连接OC,如图,CF为切线,OCCF,1+390,BMAB,2+490,OCOB,12,34,AB为直径,ACB90,3+590,4+BDC90,BDC5,CFDF;(2)在RtABC中,AC8,BACDAB,ABCABD,即,AD,34,FCFB,而FCFD,FDFB,而BOAO,OF为ABD的中位
24、线,OFAD【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和垂径定理24、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的
25、获奖率为50%,C班的参赛作品的获奖数量为:10020%50%=10(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图25、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理
26、求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长26、OD=6.【解析】(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题【详解】在AOB与COD中,AOBCOD,OD=6.【点睛】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求27、5.8【解析】过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可【详解】解:如图,过点作于点,过点作于点, 又, 四边形为矩形 在中, 答:操作平台离地面的高度约为【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算