2022-2023学年山东省潍坊市寿光重点中学中考数学模拟预测题含解析.doc

上传人:茅**** 文档编号:87798380 上传时间:2023-04-17 格式:DOC 页数:16 大小:780.50KB
返回 下载 相关 举报
2022-2023学年山东省潍坊市寿光重点中学中考数学模拟预测题含解析.doc_第1页
第1页 / 共16页
2022-2023学年山东省潍坊市寿光重点中学中考数学模拟预测题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022-2023学年山东省潍坊市寿光重点中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省潍坊市寿光重点中学中考数学模拟预测题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0x11,1x21;a+b0;a-1,其中正确结论的个数为( )A1个B2个C3个D4个2已知一个正n边形的每个内角为120,则这个多边形的对角线有()A5条B6条C8条D9

2、条3若代数式,则M与N的大小关系是( )ABCD4如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是( )ABCD5据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A0.31010 B3109 C30108 D3001076估计的值在( )A0到l之间B1到2之

3、间C2到3之间D3到4之间7如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若BOC=40,则D的度数为()A100B110C120D1308在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a0)的大致图象如图所示,则下列结论正确的是()Aa0,b0,c0B=1Ca+b+c0D关于x的方程ax2+bx+c=1有两个不相等的实数根9在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差10等腰三角形三边

4、长分别为,且是关于的一元二次方程的两根,则的值为( )A9B10C9或10D8或10二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式_12从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是 13的系数是_,次数是_14一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_15如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2OA2=_16如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F

5、处,连接CF,则CF的长度为_三、解答题(共8题,共72分)17(8分)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?18(8分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.19(8分)如图,正方形ABCD中,M为BC

6、上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N求证:ABMEFA;若AB=12,BM=5,求DE的长20(8分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.21(8分)如图,将连续的奇数1,3,5,7按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示(1)计算:若十字框的中间数为17,则a+b+c+d=_(2)发现:移动十字框,比较a+b+c+d与中间的数猜想:十字框中a、b、c、d的和

7、是中间的数的_;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由22(10分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由23(12分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打

8、折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x2)个羽毛球,供社区居民免费借用该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球设在A

9、超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元)请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】如图,且图像与y轴交于点,可知该抛物线的开口向下,即,当时, 故错误由图像可知,当时,故错误,又,故错误;,又,故正确故答案选A.【点睛】本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定2、D【解析】多边形的每一个内角都等于120,

10、则每个外角是60,而任何多边形的外角是360,则求得多边形的边数;再根据多边形一个顶点出发的对角线n3,即可求得对角线的条数【详解】解:多边形的每一个内角都等于120,每个外角是60度,则多边形的边数为360606,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有633条这个多边形的对角线有(63)9条,故选:D【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键3、C【解析】,.故选C.4、C【解析】试题解析:抛物线的顶点坐标A(1,3),抛物线的对称轴为直线x=-=1,2a+b=0,所以正确;抛物线开口向下,a0,b=-2a0,抛物线与y轴

11、的交点在x轴上方,c0,abc0,所以错误;抛物线的顶点坐标A(1,3),x=1时,二次函数有最大值,方程ax2+bx+c=3有两个相等的实数根,所以正确;抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点为(-2,0),所以错误;抛物线y1=ax2+bx+c与直线y2=mx+n(m0)交于A(1,3),B点(4,0)当1x4时,y2y1,所以正确故选C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点5、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3

12、109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.6、B【解析】9110)交于点P,设P点的坐标(x,y),xy=b,xy=8,而直线y=x+b与x轴交于A点,OA=b又OP2=x2+y2,OA2=b2,OP2OA2=x2+y2b2=(xy)2+2xyb2=1故答案为116、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】

13、如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质三、解答题(共8题,共72分)17、详见解析【解析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可【详解】解:(1

14、)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个18、证明见解析【解析】解:,.是一元二次方程的根. ,.19、(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,B=10,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEFA得出比例式,求出AE,即可得出DE的

15、长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10,ADBC,AMB=EAF,又EFAM,AFE=10,B=AFE,ABMEFA;(2)B=10,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.5,ABMEFA,即,AE=16.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质20、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的

16、切线,OBP=90,POB=90-30=60OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD,OM=DM,四边形BOCD是菱形21、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】(1)直接相加即得到答案; (2)根据(1)猜想a+b+c+d=4x; (3)用x表示a、b、c、d,相加后即等于4x; (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1【详解】(1)5+15+19+29=68,故

17、答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,a+b+c+d=x-12+x-2+x+2+x+12=4x,猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,M的值不能等于1【点睛】本题考查了一元一次方程的应用当解得方程的解后,要观察是否满足题目和实际要求再进行取舍22、(1); ;(2)或;(3)存在,或或或【解析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论

18、;(3)分、三种情况讨论,即可得出结论【详解】(1)一次函数与反比例函数,相交于点,把代入得:,反比例函数解析式为,把代入得:,点C的坐标为,把,代入得:,解得:,一次函数解析式为;(2)根据函数图像可知:当或时,一次函数的图象在反比例函数图象的上方,当或时,;(3)存在或或或时,为等腰三角形,理由如下:过作轴,交轴于,直线与轴交于点,令得,点A的坐标为,点B的坐标为,点D的坐标为,当时,则,点P的坐标为:、;当时,是等腰三角形,平分,点D的坐标为,点P的坐标为,即;当时,如图:设,则,在中,由勾股定理得:,解得:,点P的坐标为,即,综上所述,当或或或时,为等腰三角形【点睛】本题是反比例函数综

19、合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论23、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元(2)打折后购买这批粽子比不打折节省了3120元【解析】分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需

20、钱数,即可求出节省的钱数详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元(2)8040+100120-800.840-1000.75120=3640(元)答:打折后购买这批粽子比不打折节省了3640元点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算24、解:(1) yA=27x+270,yB=30x+240;(2)当2x10时,到B超市购买划算,当x=10时,两家超市一样划算,当x10时在A超市购买划算;(3)先选择B超市购买10副羽

21、毛球拍,然后在A超市购买130个羽毛球【解析】(1)根据购买费用=单价数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yAyB时,当yAyB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论【详解】解:(1)由题意,得yA=(1030+310x)0.9=27x+270;yB=1030+3(10x20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yAyB时,27x+27030x+240,得x10;当yAyB时,27x+27030x+240,得x10当2x10时,到B超市购买划算,当x=10时,两家超市一样划算,当x10时在A超市购买划算(3)由题意知x=15,1510,选择A超市,yA=2715+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(101520)30.9=351(元),共需要费用1030+351=651(元)651元675元,最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁