《2022-2023学年甘肃省张掖市城关初中重点中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘肃省张掖市城关初中重点中学中考数学模拟预测题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm2化简的结果是( )A4B4C2D23如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等
2、腰OBC,将点C向左平移5个单位,使其对应点C恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)4如图,正方形ABCD中,对角线AC、BD交于点O,BAC的平分线交BD于E,交BC于F,BHAF于H,交AC于G,交CD于P,连接GE、GF,以下结论:OAEOBG;四边形BEGF是菱形;BECG;1;SPBC:SAFC1:2,其中正确的有()个A2B3C4D55如图,已知直线AB、CD被直线AC所截,ABCD,E是平面内任意一点(点E不在直线AB、CD、AC上),设BAE=,DCE=下列各式:+,360,AEC的度数可能是()ABCD6在数轴上表示不等式2(1
3、x)4的解集,正确的是()ABCD7下列说法不正确的是( )A选举中,人们通常最关心的数据是众数B从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D数据3,5,4,1,2的中位数是48我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD9若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则
4、正圆锥侧面展开图的圆心角是( )A90 B120 C150 D18010要使分式有意义,则x的取值范围是( )Ax=BxCxDx二、填空题(本大题共6个小题,每小题3分,共18分)11据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_12比较大小:_1(填“”或“”或“”)13如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点(1)OM的长等于_;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明
5、你是怎么画的14化简:_15如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cosEFC的值是 16如图,点 A、B、C 在O 上,O 半径为 1cm,ACB=30,则的长是_三、解答题(共8题,共72分)17(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示
6、,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?18(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把ABO绕点A顺时针旋转,得ABO,点B,O旋转后的对应点为B,O(1)如图1,当旋转角为90时,求BB的长;(2)如图2,当旋转角为120时,求点O的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P,当OP+AP取得最小值时,求点P
7、的坐标(直接写出结果即可)19(8分)解不等式组:并把解集在数轴上表示出来.20(8分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AEED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE求证:ABEDEF若正方形的边长为4,求BG的长21(8分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0)AOB绕着O顺时针旋转,得AOB,点A、B旋转后的对应点为A、B,记旋转角为(I)如图1,若=30,求点B的坐标;()如图2,若090,设直线AA和直线BB交于点P,求证:AABB;()若0360,求()中的点P纵坐标的最小值(直接写出结果即可)22(1
8、0分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率23(12分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).24如图,在A
9、BCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60,CF=2,求AF的长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等2、B【解析】根据
10、算术平方根的意义求解即可【详解】 4,故选:B【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.3、B【解析】令x=0,y=6,B(0,6),等腰OBC,点C在线段OB的垂直平分线上,设C(a,3),则C (a5,3),3=3(a5)+6,解得a=4,C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.4、C【解析】根据AF是BAC的平分线,BHAF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EGEB,FGFB,即
11、可判定选项;设OAOBOCa,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CFGFBF,由四边形ABCD是正方形和角度转换证明OAEOBG,即可判定;则GOE是等腰直角三角形,得到GEOG,整理得出a,b的关系式,再由PGCBGA,得到1+,从而判断得出;得出EABGBC从而证明EABGBC,即可判定;证明FABPBC得到BFCP,即可求出,从而判断.【详解】解:AF是BAC的平分线,GAHBAH,BHAF,AHGAHB90,在AHG和AHB中,AHGAHB(ASA),GHBH,AF是线段BG的垂直平分线,EGEB,FGFB,四边形ABCD是正方形,BAFCAF4522.5,ABE4
12、5,ABF90,BEFBAF+ABE67.5,BFE90BAF67.5,BEFBFE,EBFB,EGEBFBFG,四边形BEGF是菱形;正确;设OAOBOCa,菱形BEGF的边长为b,四边形BEGF是菱形,GFOB,CGFCOB90,GFCGCF45,CGGFb,CGF90,CFGFBF,四边形ABCD是正方形,OAOB,AOEBOG90,BHAF,GAH+AGH90OBG+AGH,OAEOBG,在OAE和OBG中,OAEOBG(ASA),正确;OGOEab,GOE是等腰直角三角形,GEOG,b(ab),整理得ab,AC2a(2+)b,AGACCG(1+)b,四边形ABCD是正方形,PCAB,
13、1+,OAEOBG,AEBG,1+,1,正确;OAEOBG,CABDBC45,EABGBC,在EAB和GBC中,EABGBC(ASA),BECG,正确;在FAB和PBC中,FABPBC(ASA),BFCP,错误;综上所述,正确的有4个,故选:C【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握5、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由ABCD,可得AOC=DCE1=AOC=BAE1+AE1C
14、,AE1C=-过点E2作AB的平行线,由ABCD,可得1=BAE2=,2=DCE2=AE2C=+由ABCD,可得BOE3=DCE3=BAE3=BOE3+AE3C,AE3C=-由ABCD,可得BAE4+AE4C+DCE4=360,AE4C=360-AEC的度数可能是+,-,360,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.6、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一
15、元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变7、D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,2由小到大排列为2,1,3,4,5,所以中位数是3,所以D选项的说法错误故选D考点:随机事件发
16、生的可能性(概率)的计算方法8、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.9、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2r,设正圆锥的侧面展开图的圆心角是n,则=2r,解得:n=180故选D考点:圆锥的计算10、D【解析】本题主要考查分式有意义的条件:分母不能为0
17、,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义二、填空题(本大题共6个小题,每小题3分,共18分)11、2.041【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】解:204000用科学记数法表示2.041故答案为2.041点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值
18、12、【解析】0.62,0.621,1;故答案为13、(1)4;(2)见解析;【解析】解:(1)由勾股定理可得OM的长度 (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。【详解】(1)OM=4;故答案为4(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0a4),PA2=(a1)2+a2,PB2=(a4)2+a2,PA2+PB2=4(a)2+,0a4,当a=时,PA2+PB2 取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接
19、ST,得到点R,连接NR交OM于P,则点P即为所求【点睛】(1) 根据勾股定理即可得到结论;(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.14、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.15、.【解析】试题分析:根据翻转变换的性质得到AFE=D=90,AF=AD=5,根据矩形的性质得到EFC=BAF,根据余弦的概念计算即可由翻转变换的性质可知,AFE=D=90,AF=AD=5,EFC+AFB=90,B=90,BA
20、F+AFB=90,EFC=BAF,cosBAF=,cosEFC=,故答案为:考点:轴对称的性质,矩形的性质,余弦的概念.16、.【解析】根据圆周角定理可得出AOB=60,再根据弧长公式的计算即可【详解】ACB=30,AOB=60,OA=1cm,的长=cm.故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=三、解答题(共8题,共72分)17、 (1) 乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一);(2)120;(3)160或1;(4).【解析】(1)对比图与图,找出图中与图不相同的地方;(2)则159.5164.5这一部分的人数占全班人数的
21、比乘以360;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为2060360=120,故答案为120;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或
22、1故答案为160或1;(4)列树状图得:P(一男一女)=18、(1)5;(2)O(,);(3)P(,).【解析】(1)先求出AB利用旋转判断出ABB是等腰直角三角形,即可得出结论;(2)先判断出HAO=60,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;(3)先确定出直线OC的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论【详解】解:(1)A(3,0),B(0,4),OA=3,OB=4,AB=5,由旋转知,BA=BA,BAB=90,ABB是等腰直角三角形,BB=AB=5;(2)如图2,过点O作OHx轴于H,由旋转知,OA=OA=3,OAO=120,
23、HAO=60,HOA=30,AH=AO=,OH=AH=,OH=OA+AH=,O();(3)由旋转知,AP=AP,OP+AP=OP+AP如图3,作A关于y轴的对称点C,连接OC交y轴于P,OP+AP=OP+CP=OC,此时,OP+AP的值最小点C与点A关于y轴对称,C(3,0)O(),直线OC的解析式为y=x+,令x=0,y=,P(0,),OP=OP=,作PDOH于DBOA=BOA=90,AOH=30,DPO=30,OD=OP=,PD=OD=,DH=OHOD=,OH+PD=,P()【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形
24、是解答本题的关键19、不等式组的解集为7x1,将解集表示在数轴上表示见解析.【解析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来试题解析:由得:2x2,即x1,由得:4x25x+5,即x7,所以7x1在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集点睛:分别求出各不等式的解集,再求出其公共解集即可不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等
25、式组的解集有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.20、(1)见解析;(2)BG=BC+CG=1【解析】(1)利用正方形的性质,可得A=D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得ABEDEF;(2)根据相似三角形的预备定理得到EDFGCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:ABCD为正方形,AD=AB=DC=BC,A=D=90 .AE=ED,AE:AB=1:2.DF=DC,DF:DE=1:2,AE:AB=DF:DE,ABEDEF;(2)解:ABCD为正方形,ED
26、BG,EDFGCF,ED:CG=DF:CF.又DF=DC,正方形的边长为4,ED=2,CG=6,BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.21、(1)B的坐标为(,3);(1)见解析 ;(3)1【解析】(1)设AB与x轴交于点H,由OA=1,OB=1,AOB=90推出ABO=B=30,由BOB=30推出BOAB,由OB=OB=1推出OH=OB=,BH=3即可得出;(1)证明BPA=90即可;(3)作AB的中点M(1,),连接MP,由APB=90,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(
27、1,),所以当PMx轴时,点P纵坐标的最小值为1【详解】()如图1,设AB与x轴交于点H,OA=1,OB=1,AOB=90,ABO=B=30,BOB=30,BOAB,OB=OB=1,OH=OB=,BH=3,点B的坐标为(,3);()证明:BOB=AOA=,OB=OB,OA=OA,OBB=OAA=(180),BOA=90+,四边形OBPA的内角和为360,BPA=360(180)(90+)=90,即AABB;()点P纵坐标的最小值为如图,作AB的中点M(1,),连接MP,APB=90,点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,)当PMx轴时,点P纵坐标的最小值为1【点睛】
28、本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.22、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【点睛】本题考查了列
29、表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23、见解析【解析】根据题意作CBA=CAP即可使得ABCPAC.【详解】如图,作CBA=CAP,P点为所求. 【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.24、 (1)见解析;(2)2【解析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可; 方法二: 只要证明AEBAFD. 可得AB=AD即可解决问题;(2) 在RtACF, 根据AF=CFtanACF计算即可.【详解】(1)证法一:连接AC,如图AEBC,AFDC,AE=AF,ACF=ACE,四边形ABCD是平行四边形,ADBCDAC=ACBDAC=DCA,DA=DC,四边形ABCD是菱形证法二:如图,四边形ABCD是平行四边形,B=DAEBC,AFDC,AEB=AFD=90,又AE=AF,AEBAFDAB=AD,四边形ABCD是菱形(2)连接AC,如图AEBC,AFDC,EAF=60,ECF=120,四边形ABCD是菱形,ACF=60,在RtCFA中,AF=CFtanACF=2【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。