《2023届山西省(晋城地区)重点名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山西省(晋城地区)重点名校中考考前最后一卷数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若ABP组成的三角形恰为等腰直角三角形,则b24ac的值为()A1B4C8D122小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路
2、到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个3如图,ACB=90,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BFDE,与AE的延长线交于点F,若AB=6,则BF的长为()A6B7C8D104已知x2+mx+25是完全平方式,则m的值为()A10B10C20D205世界因爱而美好,在今年我
3、校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A20、20B30、20C30、30D20、306一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()ABCD7如图所示的图形,是下面哪个正方体的展开图()ABCD8如图,在平面直角坐标系xOy中,A(2,0),B(0,2),C的圆心为点C(1,0),半径为1若D是C上的一个动点,线段DA与y轴交于E点,则ABE面积的最小值是()A2 B C D9关于x的一元二次方程(m2)x2+(2m1)x+
4、m20有两个不相等的正实数根,则m的取值范围是()AmBm且m2Cm2Dm210如图,已知是中的边上的一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE二、填空题(共7小题,每小题3分,满分21分)11已知:如图,矩形ABCD中,AB5,BC3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_12如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120,这个扇形的面积为 13二次函数y(x2m)2+1,当mxm+1时,y随x的增大而减小,则m的取值范围是_14计算:(
5、a2)2=_15如图,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A顺时针旋转90后,得到AFB,连接EF,下列结论:EAF45;AEDAEF;ABEACD;BE1+DC1DE1其中正确的是_(填序号)16计算3结果等于_17如图,已知函数y3x+b和yax3的图象交于点P(2,5),则根据图象可得不等式3x+bax3的解集是_三、解答题(共7小题,满分69分)18(10分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在ABC中,ABAC,点P为边BC上任一点,过点P作PDAB,PEAC,垂足分别为D,E,过点C作CFAB,垂足为F,求
6、证:PD+PECF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PECF小俊的证明思路是:如图2,过点P作PGCF,垂足为G,可以证得:PDGF,PECG,则PD+PECF变式探究如图3,当点P在BC延长线上时,其余条件不变,求证:PDPECF;请运用上述解答中所积累的经验和方法完成下列两题:结论运用如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD8,CF3,求PG+PH的值;迁移拓展图5是一个航模的截面示意图在四边形ABCD中,E为AB边上的一点,E
7、DAD,ECCB,垂足分别为D、C,且ADCEDEBC,AB2dm,AD3dm,BDdmM、N分别为AE、BE的中点,连接DM、CN,求DEM与CEN的周长之和19(5分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若A=D,CD=2(1)求A的度数(2)求图中阴影部分的面积20(8分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)
8、点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标21(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性AMB恒为等腰三角形,我们规定:当AMB为直角三角形时,就称AMB为该抛物线的“完美三角形”(1)如图2,求出抛物线的“完美三角形”斜边AB的长;抛物线与的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值22(
9、10分)(1)计算:()3()34cos30+;(2)解方程:x(x4)=2x823(12分)先化简代数式:,再代入一个你喜欢的数求值.24(14分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求OBC的面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c
10、=0的两根得到x1+x2=-,x1x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到|=,然后进行化简可得到b2-1ac的值【详解】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),则x1、x2为方程ax2+bx+c=0的两根,x1+x2=-,x1x2=,AB=|x1-x2|=,ABP组成的三角形恰为等腰直角三角形,|=,=,b2-1ac=1故选B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质和
11、等腰直角三角形的性质2、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一3、C【解析】 ACB=90,D为AB的中点,AB=6,CD=AB
12、=1又CE=CD,CE=1,ED=CE+CD=2又BFDE,点D是AB的中点,ED是AFB的中位线,BF=2ED=3故选C4、B【解析】根据完全平方式的特点求解:a22ab+b2.【详解】x2+mx+25是完全平方式,m=10,故选B【点睛】本题考查了完全平方公式:a22ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍5、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数详解:根据右图提
13、供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.6、A【解析】一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.7、D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而
14、展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.8、C【解析】当C与AD相切时,ABE面积最大,连接CD,则CDA=90,A(2,0),B(0,2),C的圆心为点C(-1,0),半径为1,CD=1,AC=2+1=3,AD=2,AOE=ADC=90,EAO=CAD,AOEADC,即,OE=,BE=OB+OE=2+SABE=BE?OA=(2+)2=2+故答案为9、D【解析】根据一元二次方程的根的判别式的意义得到m20且(2m1)24
15、(m2)(m2) 0,解得m且m2,再利用根与系数的关系得到, m20,解得m2,即可求出答案【详解】解:由题意可知:m20且(2m1)24(m2)212m150,m且m2,(m2)x2+(2m1)x+m20有两个不相等的正实数根,0,m20,m2,m,m2,故选:D【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键10、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFB
16、AE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据矩形的性质得到CD=AB=5,AD=BC=3,D=C=90,根据折叠得到BFAB5,EFEA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】矩形ABCD中,AB5,BC3,CD=AB=5,AD=BC=3,D=C=90,由折叠的性质可知,BFAB5,EFEA,在RtBCF中,CF4, DFDCCF1,设AEx,则EFx,DE3x,在RtDEF中,E
17、F2DE2+DF2,即x2(3x)2+12,解得,x,故答案为:【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.12、300【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可底面圆的面积为100, 底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r, 则=20, 解得:母线长为30,扇形的面积为rl=1030=300考点:(1)、圆锥的计算;(2)、扇形面积的计算13、m1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x
18、的增大而减小,可求得m+12m,即m1故答案为m1点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键14、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.15、【解析】根据旋转得到,对应角CADBAF,由EAFBAF+BAECAD+BAE即可判断由旋转得出AD=AF, DAEEAF,及公共边即可证明在ABEACD中,只有ABAC、ABEACD45两个条件,无法证明先由ACDABF,得出ACDABF45,进而得出EBF=90,然后在RtBEF中,运用勾股定理得出BE1+BF1=EF1,等
19、量代换后判定正确【详解】由旋转,可知:CADBAFBAC90,DAE45,CAD+BAE45,BAF+BAEEAF45,结论正确;由旋转,可知:ADAF在AED和AEF中,AEDAEF(SAS),结论正确;在ABEACD中,只有ABAC,、ABEACD45两个条件,无法证出ABEACD,结论错误;由旋转,可知:CDBF,ACDABF45,EBFABE+ABF90,BF1+BE1EF1AEDAEF,EFDE,又CDBF,BE1+DC1DE1,结论正确故答案为:【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键16、1【解析】根据二次根式的乘法法则进行
20、计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.17、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式3x+bax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.三、解答题(共7小题,满分69分)18、小军的证明:见解析;小俊的证明:见解析;变式探究见解析;结论运用PG+PH的值为1;迁移拓展(6+2)dm【解析】小军的证明
21、:连接AP,利用面积法即可证得;小俊的证明:过点P作PGCF,先证明四边形PDFG为矩形,再证明PGCCEP,即可得到答案;变式探究小军的证明思路:连接AP,根据SABCSABPSACP,即可得到答案;小俊的证明思路:过点C,作CGDP,先证明四边形CFDG是矩形,再证明CGPCEP即可得到答案;结论运用 过点E作EQBC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BEBF即可得到答案;迁移拓展延长AD,BC交于点F,作BHAF,证明ADEBCE得到FA=FB,设DHx,利用勾股定理求出x得到BH6,再根据ADEBCE90,且M,N分别为AE,BE的中
22、点即可得到答案.【详解】小军的证明:连接AP,如图PDAB,PEAC,CFAB,SABCSABP+SACP,ABCFABPD+ACPE,ABAC,CFPD+PE小俊的证明:过点P作PGCF,如图2,PDAB,CFAB,PGFC,CFDFDGFGP90,四边形PDFG为矩形,DPFG,DPG90,CGP90,PEAC,CEP90,PGCCEP,BDPDPG90,PGAB,GPCB,ABAC,BACB,GPCECP,在PGC和CEP中, PGCCEP,CGPE,CFCG+FGPE+PD;变式探究小军的证明思路:连接AP,如图,PDAB,PEAC,CFAB,SABCSABPSACP,ABCFABPD
23、ACPE,ABAC,CFPDPE;小俊的证明思路:过点C,作CGDP,如图,PDAB,CFAB,CGDP,CFDFDGDGC90,CFGD,DGC90,四边形CFDG是矩形,PEAC,CEP90,CGPCEP,CGDP,ABDP,CGPBDP90,CGAB,GCPB,ABAC,BACB,ACBPCE,GCPECP,在CGP和CEP中, CGPCEP,PGPE,CFDGDPPGDPPE结论运用如图过点E作EQBC,四边形ABCD是矩形,ADBC,CADC90,AD8,CF3,BFBCCFADCF5,由折叠得DFBF,BEFDEF,DF5,C90,DC1, EQBC,CADC90,EQC90CAD
24、C,四边形EQCD是矩形,EQDC1,ADBC,DEFEFB,BEFDEF,BEFEFB,BEBF,由问题情景中的结论可得:PG+PHEQ,PG+PH1PG+PH的值为1迁移拓展延长AD,BC交于点F,作BHAF,如图,ADCEDEBC, EDAD,ECCB,ADEBCE90,ADEBCE,ACBE,FAFB,由问题情景中的结论可得:ED+ECBH,设DHx,AHAD+DH3+x,BHAF,BHA90,BH2BD2DH2AB2AH2,AB2,AD3,BD,()2x2(2)2(3+x)2, x1,BH2BD2DH237136,BH6,ED+EC6,ADEBCE90,且M,N分别为AE,BE的中点
25、,DMEMAE,CNENBE, DEM与CEN的周长之和DE+DM+EM+CN+EN+ECDE+AE+BE+ECDE+AB+ECDE+EC+AB6+2,DEM与CEN的周长之和(6+2)dm【点睛】此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.19、 (1) A=30;(2) 【解析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OCCD,推出OCD=90,即D+COD=90,由OA=OC,推出A=ACO,由A=D,推出A=ACO=D再由
26、A+ACD+D=18090=90即可得出.(2)先求COD度数及OC长度,即可求出图中阴影部分的面积【详解】解:(1)连结OCCD为O的切线OCCDOCD=90又OA=OCA=ACO又A=DA=ACO=D而A+ACD+D=18090=90A=30(2)由(1)知:D=A=30COD=60又CD=2OC=2S阴影=【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.20、 (1)抛物线的解析式为:y=x1+x+1(1)存在,P1(,2),P1(,),P3(,)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=
27、【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论试题解析:(1)抛物线y=x1+mx+n经过A(1,0),C
28、(0,1)解得:,抛物线的解析式为:y=x1+x+1;(1)y=x1+x+1,y=(x)1+,抛物线的对称轴是x=OD=C(0,1),OC=1在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=CP1=CP3=CD作CHx轴于H,HP1=HD=1,DP1=2P1(,2),P1(,),P3(,);(3)当y=0时,0=x1+x+1x1=1,x1=2,B(2,0)设直线BC的解析式为y=kx+b,由图象,得,解得:,直线BC的解析式为:y=x+1如图1,过点C作CMEF于M,设E(a,a+1),F(a,a1+a+1),EF=a1+a+1(a+1)=a1+1a(0x2)S四边
29、形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a1+1a)+(2a)(a1+1a),=a1+2a+(0x2)=(a1)1+a=1时,S四边形CDBF的面积最大=,E(1,1)考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值21、(1)AB=2;相等;(2)a=;(3), 【解析】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,设出点B的坐标为(n,n),根据二次函数得出n的值,然后得出AB的值,因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)
30、根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn4m1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.【详解】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,ABx轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,(舍去),抛物线的“完美三角形”的斜边相等;(2)抛物线与抛物线的形状相同,抛物线与抛物
31、线的“完美三角形”全等,抛物线的“完美三角形”斜边的长为4,抛物线的“完美三角形”斜边的长为4,B点坐标为(2,2)或(2,-2),(3) 的最大值为-1, , ,抛物线的“完美三角形”斜边长为n,抛物线的“完美三角形”斜边长为n,B点坐标为,代入抛物线,得, (不合题意舍去),22、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8()4+1=81+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二
32、次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.23、【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算.【详解】解:原式.使原分式有意义的值可取2,当时,原式.【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.24、(1)A(4,3);(2)28.【解析】(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在RtOAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得OBC的面积.【详解】解:(1)由题意得: ,解得,点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D, 在RtOAD中,由勾股定理得, .P(a,0),B(a,),C(a,-a+7),BC=,解得a=8.