《广西贵港市港南区重点名校2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广西贵港市港南区重点名校2023届中考考前最后一卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12016的相反数是( )ABCD2某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同设原计划平均每天生产x台机器,根据题意,
2、下面所列方程正确的是()ABCD3在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A最高分90B众数是5C中位数是90D平均分为87.54如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是( )A点AB点BC点CD点D5下列运算正确的是()ABCa2a3=a5D(2a)3=2a36如图,空心圆柱体的左视图是( )ABCD7如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:18计算6m6(-2m2)3的结果为()ABCD9如图,AB是O的切线,半径O
3、A=2,OB交O于C,B=30,则劣弧的长是()ABCD10如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A2mB mC3mD6m11ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )ABE=DFBAE=CFCAF/CEDBAE=DCF12已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )A1 B2 C1 D2二、填空题:(本大题共6个小题,每小题4分,共24分)13已知点(1,m)、(2,n )在二次函数yax22ax1的图象上,如果mn,那么a_
4、0(用“”或“”连接)14如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_15已知关于X的一元二次方程有实数根,则m的取值范围是_16已知式子有意义,则x的取值范围是_17M的圆心在一次函数y=x+2图象上,半径为1当M与y轴相切时,点M的坐标为_18如图,ABC是直角三角形,C=90,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tanOCB=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明
5、过程或演算步骤19(6分)如图,直线y=x与双曲线y=(k0,x0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值20(6分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家用树形图或列表法求只进行两局游戏便
6、能确定赢家的概率21(6分)在边长为1的55的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积22(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:补全条形统计图,“体育”对应扇形的圆心角是 度;根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用
7、列表法或者画树状图的方法求所抽取的人来自不同班级的概率23(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率24(10分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.25(10分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长26(12分)黄石市在
8、创建国家级文明卫生城市中,绿化档次不断提升某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用27(12分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴参考答案一、选择题(本大题共12个小题,每小题4
9、分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.2、B【解析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:故选B【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程3、C【解析】试题分析:根据折线统计图可得:最高分为95
10、,众数为90;中位数90;平均分=(802+85+905+952)(2+1+5+2)=88.5.4、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.5、C【解析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断【详解】解:A、=2,此选项错误;B、不能进一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二
11、次根式的加减运算、同底数幂的乘法及积的乘方的运算法则6、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图7、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B8、D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案详解:原式=, 故选D点睛:本题主要考查的是幂的
12、计算法则,属于基础题型明白幂的计算法则是解决这个问题的关键9、C【解析】由切线的性质定理得出OAB=90,进而求出AOB=60,再利用弧长公式求出即可【详解】AB是O的切线,OAB=90,半径OA=2,OB交O于C,B=30,AOB=60,劣弧AC的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.10、C【解析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,三根木条要组成三角形,x-x10-2x
13、;【解析】=a(x-1)2-a-1,抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,|11|21|,且mn, a0.故答案为14、或或1【解析】如图所示:当AP=AE=1时,BAD=90,AEP是等腰直角三角形,底边PE=AE=;当PE=AE=1时,BE=ABAE=81=3,B=90,PB=4,底边AP=;当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或115、m3且m2【解析】试题解析:一元二次方程有实数根4-4(m-2)0且m-20解得:m3且m2.16、x1且x1【解析】根据二次根式有意义,分式有意义得:1x0
14、且x+10,解得:x1且x1故答案为x1且x117、(1,)或(1,)【解析】设当M与y轴相切时圆心M的坐标为(x,x+2),再根据M的半径为1即可得出y的值【详解】解:M的圆心在一次函数y=x+2的图象上运动,设当M与y轴相切时圆心M的坐标为(x, x+2),M的半径为1,x=1或x=1,当x=1时,y=,当x=1时,y=.P点坐标为:(1, )或(1, ).故答案为(1, )或(1, ).【点睛】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.18、【解析】利用勾股定理求出AB,再证明OC=OA=OD,推出OCB=ODC,可得
15、tanOCB=tanODC=,由此即可解决问题.【详解】在RtABC中,AC=4,BC=3,ACB=90,AB=5,四边形ABDE是菱形,AB=BD=5,OA=OD,OC=OA=OD,OCB=ODC,tanOCB=tanODC=,故答案为【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)k=b2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可解答(2)先根据一次函数平移的性质求
16、出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点A、B在双曲线y=上,3bb=,解得b=1,k=311=考点:反比例函数综合题20、(1),(2)【解析】解:(1)画
17、树状图得:总共有9种等可能情况,每人获胜的情形都是3种,两人获胜的概率都是(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为任选其中一人的情形可画树状图得:总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,两局游戏能确定赢家的概率为:(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案21、(1)如图所示,见解析;四边形OABC即为所求;
18、(2)S四边形OABC1【解析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OABC=SOAB+SOBC计算可得【详解】(1)如图所示,四边形OABC即为所求(2)S四边形OABCSOAB+SOBC44+228+21【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形22、(1)72;(2)700;(3)【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,
19、用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案试题解析:(1)调查的学生总数为6030%=200(人),则体育类人数为200(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360=72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000=700(人),(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)=考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体23、.【解析】试题分析:先根据题意画出树状图或列表,由图
20、表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率24、15元【解析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x5)元. 根据题意,列方程得:, 解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件
21、,找出合适的等量关系列出方程,再求解25、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,D
22、E=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.26、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元【解析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(
23、2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得 ,解得 ,答:A种树木每棵2元,B种树木每棵80元(2)设购买A种树木x棵,则B种树木(2x)棵,则x3(2x)解得x1又2x0,解得x21x2设实际付款总额是y元,则y0.92x80(2x)即y18x7 3180,y随x增大而增大,当x1时,y最小为1817 38 550(元)答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元27、开口方向:向上;点坐标:(-1,-3);称轴:直线.【解析】将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴【详解】解:,开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.【点睛】熟练掌握将一般式化为顶点式是解题关键.