《2023届山西省汾西县中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山西省汾西县中考考前最后一卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个2设x1,x2是一元
2、二次方程x22x50的两根,则x12+x22的值为()A6B8C14D163安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A3804.2103B380.42104C3.8042106D3.80421054第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张
3、,抽出的卡片正面恰好是滑雪项目图案的概率是( )ABCD5如图,边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,图中阴影部分的面积为( )ABCD6如图,交于点,平分,交于. 若,则的度数为( ) A35oB45oC55oD65o7点M(1,2)关于y轴对称点的坐标为()A(1,2)B(1,2)C(1,2)D(2,1)8某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人)5814194时间(小时)678910A14,9B9,9C9,8D8,99哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候
4、,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A BC D10在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为2二、填空题(本大题共6个小题,每小题3分,共18分)11中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 12某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李13如图,点A在反比例函数y=(x0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:
5、PB=1:2,则正方形OABC的面积=_14已知直角三角形的两边长分别为3、1则第三边长为_15下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_16计算:_三、解答题(共8题,共72分)17(8分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA若OCP与PDA的面积比为1:4,求边CD的长如图2,在()的条件下,擦去折痕AO、线段OP,连接BP动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BNPM,连接MN交P
6、B于点F,作MEBP于点E试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律若不变,求出线段EF的长度18(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;(2)科普类图书不少于600本;(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,
7、便调整了销售方案,科普类图书每本标价降低a(0a5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?19(8分)(1)如图1,在矩形ABCD中,点O在边AB上,AOC=BOD,求证:AO=OB;(2)如图2,AB是O的直径,PA与O相切于点A,OP与O相交于点C,连接CB,OPA=40,求ABC的度数20(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本
8、进行整理,得到下列不完整的统计图表:成绩x/分频数频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25请根据所给信息,解答下列问题:m ,n ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21(8分)如图,直线y=x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与
9、抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范围;若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值22(10分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?23(12分)如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=12,求四边
10、形ABCD的周长24已知,关于 x的一元二次方程(k1)x2+x+30 有实数根,求k的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键2、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2
11、-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】3804.2千=3804200,3804200=3.8042106;故选:C【点睛】本题考查科学记数法
12、的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解【详解】有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B【点睛】本题考查了简单事件的概率用到的知识点为:概率=所求情况数与总情况数之比5、C【解析】设BC与CD的交点为E,连接AE,利用“HL”证明RtABE和RtADE全等,根据全等三角形对应角相等DAEBAE,再根据旋转角求出DAB6
13、0,然后求出DAE30,再解直角三角形求出DE,然后根据阴影部分的面积正方形ABCD的面积四边形ADEB的面积,列式计算即可得解【详解】如图,设BC与CD的交点为E,连接AE,在RtABE和RtADE中,RtABERtADE(HL),DAEBAE,旋转角为30,DAB60,DAE6030,DE1,阴影部分的面积112(1)1故选C【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出DAEBAE,从而求出DAE30是解题的关键,也是本题的难点6、D【解析】分析:根据平行线的性质求得BEC的度数,再由角平分线的性质即可求得CFE 的度数.详解: 又EF
14、平分BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.7、A【解析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.8、C【解析】解:观察、分析表格中的数据可得:课外阅读时间为1小时的人数最多为11人,众数为1将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,中位数为2故选C【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:当数
15、据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.9、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得故选D考点:由实际问题抽象出二元一次方程组10、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题(本大题共6个小题,每小题3分
16、,共18分)11、9.61【解析】将9600000用科学记数法表示为9.61故答案为9.6112、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键13、1.【解析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形
17、的判定和性质、勾股定理可以求得AB的长【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AEx轴于点EPAO=OEA=90,POA+AOE=90,AOE+OAE=90,POA=OAE,POAOAE,=,即=,解得:m=1或m=1(舍去),点A的坐标为(1,3),OA=,正方形OABC的面积=OA2=1故答案为1【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答14、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:长为3
18、的边是直角边,长为3的边是斜边时:第三边的长为:;长为3、3的边都是直角边时:第三边的长为:;第三边的长为:或4考点:3勾股定理;4分类思想的应用15、甲【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.16、【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案【详解】原式
19、故答案为【点睛】本题考查了实数运算,正确化简各数是解题的关键三、解答题(共8题,共72分)17、(1)10;(2). 【解析】(1)先证出C=D=90,再根据1+3=90,1+2=90,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8x,由勾股定理得 x2=(8x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQAN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQNFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代
20、入EF=PB即可得出线段EF的长度不变【详解】(1)如图1,四边形ABCD是矩形, C=D=90,1+3=90,由折叠可得APO=B=90,1+2=90,2=3, 又D=C,OCPPDA; OCP与PDA的面积比为1:4, , CP=AD=4设OP=x,则CO=8x,在RtPCO中,C=90,由勾股定理得 x2=(8x)2+42,解得:x=5,AB=AP=2OP=10,边CD的长为10; (2)作MQAN,交PB于点Q,如图2,AP=AB,MQAN,APB=ABP=MQPMP=MQ,BN=PM,BN=QM MP=MQ,MEPQ,EQ=PQMQAN,QMF=BNF,MFQNFBQF=FB,EF=
21、EQ+QF=(PQ+QB)=PB, 由(1)中的结论可得:PC=4,BC=8,C=90,PB=,EF=PB=2, 在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形18、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】(1)先设B类图书的标
22、价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可 (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.518=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的
23、标价为(27-a)元(0a5),由题意得,解得:600t800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0a3时,3-a0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3a5时,3-a0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大【点睛】本题考查了一次函数
24、的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解19、(1)证明见解析;(2)25.【解析】试题分析: (1)根据等量代换可求得AOD=BOC,根据矩形的对边相等,每个角都是直角,可知A=B=90,AD=BC,根据三角形全等的判定AAS证得AODBOC,从而得证结论(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角POA的度数,然后利用圆周角定理来求ABC的度数试题解析:(1)AOC=BOD AOC -COD=BOD-COD即AOD=BOC 四边形ABCD是矩形A=B=90,AD=
25、BC AO=OB (2)解:AB是的直径,PA与相切于点A,PAAB,A=90. 又OPA=40,AOP=50,OB=OC,B=OCB. 又AOP=B+OCB,. 20、(1)70,0.2(2)70(3)750【解析】(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人【详解】解:(1)由题意可得,m2000.3570,n402000.2,故答案为70,0.2;(2)由(1)知,m70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这
26、次比赛的3000名学生中成绩“优”等约有:30000.25750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答21、(2)y=x24x+3;(2)2x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2),当直线l2经过点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33
27、,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x22,2y33,即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间
28、,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ
29、由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意利用数形结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大22、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组
30、,解之即可得出结论;根据利润销售收入成本,即可求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算23、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得
31、出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长24、0k且 k1【解析】根据二次项系数非零、被开方数非负及根的判别式0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围【详解】解:关于 x 的一元二次方程(k1)x2+x+30 有实数根,2k0,k-10,=()2-43(k-1)0,解得:0k且 k1k 的取值范围为 0k且 k1【点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式0,列出关于 k 的一元一次不等式组是解题的关键当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.