《2023届山西省兴县圪垯中学中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山西省兴县圪垯中学中考考前最后一卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1若0m2,则关于x的一元二次方程(x+m)(x+3m)
2、3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m2如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D543下列标志中,可以看作是轴对称图形的是( )ABCD4cos45的值是()ABCD15如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()ABC50D506不等式的最小整数解是( )A3B2C1D27如图,在ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD若B=40,C=36,则DAC的度数是()A70B44C34D248如图,将矩形
3、ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是( )A68B20C28D229如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD10的值是()A1B1C3D3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,中,AC=3,BC=4,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60,则点P随之运动的路径长是_12方程的解是_13如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.14如图,已知函数y3x+b
4、和yax3的图象交于点P(2,5),则根据图象可得不等式3x+bax3的解集是_15如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是_16如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 三、解答题(共8题,共72分)17(8分)如图1,ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当
5、点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长18(8分)(1)计算:;(2)已知ab,求(a2)2+b(b2a)+4(a1)的值19(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围20(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度
6、如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长21(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.22(10分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距
7、离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数yx2b2x,若其反向距离为零,求b的值;若1b3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围23(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或
8、销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值24有4张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n(1)请用列表或树状图的方式把(m,n)所有的结果表示出来(2)求选出的(m,n)在二、四象限的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、A
9、【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质3、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对
10、称图形,符合题意故选D【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合4、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45= .故选:C.【点睛】本题考查特殊角的三角函数值.5、A【解析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解【详解】解:圆锥的侧面积=55=故选A【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长
11、,扇形的半径等于圆锥的母线长6、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】,不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.7、C【解析】易得ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出DAC【详解】AB=BD,B=40,ADB=70,C=36,DAC=ADBC=34故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.8、D【解析】试题解析:四边
12、形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,而ABD=D=90,3=180-2=68,BAB=90-68=22,即=22故选D9、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.10、B【解析】直接利用立方
13、根的定义化简得出答案【详解】因为(-1)3=-1,=1故选:B【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键,二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】作PDBC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.【详解】作PDBC,则PDAC,PBDABC, .AC=3,BC=4,AB=,AP=2BP,BP=,点P运动的路径长=.故答案为:.【点睛】本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.12、1【解析】,
14、x=1,代入最简公分母,x=1是方程的解.13、26【解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO=90,根据直角三角形两锐角互余计算即可【详解】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键14、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式3x+b
15、ax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.15、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率详解:英文单词probability中,一共有11个字母,其中字母b有2个,任取一张,那么取到字母b的概率为 故答案为点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比16、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题
16、考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(共8题,共72分)17、(1)见解析;(2)见解析;.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明ABDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=
17、PN,PMN是等腰三角形;(2)如图2,DAE=BAC,BAD=CAE,AB=AC,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接AM,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD
18、=CE=CM+EM=【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC18、(1);(1)1.【解析】(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将ab的值整体代入计算可得【详解】(1)原式=4+181=4+141=11;(1)原式=a14a+4+b11ab+4a4=
19、a11ab+b1=(ab)1,当ab=时,原式=()1=1【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力19、(1)y=-2x+31,(2)20x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不
20、高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20x120、路灯高CD为5.1米【解析】根据AMEC,CDEC,BNEC,EAMA得到MACDBN,从而得到ABNACD,利用相似三角形对应边的比相等列出比例式求解即可【详解】设CD长为x米,AMEC,CDEC,BNEC,EAMA,MACDBN,ECCDx米,ABNACD,即,解得:x5.1经检验,x5.1是原方程的解,路灯高CD为5.1米【点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形21、(1);(2)1或9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表
21、达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m.由得, x2(5m)x80.(5m)2480,解得m1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的
22、交点坐标,把两个函数关系式联立成方程组求解22、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b1;0n8;(3)当m2或m2时,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m1,n1(1)2,故y有反向值,反向距离为2,当mm2,得m0或m1,n0(1)1,故yx2有反向值,反
23、向距离是1;(2)令mm2b2m,解得,m0或mb21,反向距离为零,|b210|0,解得,b1;令mm2b2m,解得,m0或mb21,n|b210|b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题23、(1)y=50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【解析】(1)根据题
24、意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决【详解】(1)由题意可得,y=1050(30x)+3100x50(30x)=50x+10500,即y与x的函数关系式为y=50x+10500;(2)由题意可得,得x,x是整数,y=50x+10500,当x=12时,y取得最大值,此时,y=5012+10500=9900,30x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性
25、质解答24、(1)详见解析;(2)P= 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,3),(2, 4),(-1,2),(-1,3),(1, 4),(3,2),(3,-1),(3, 4),(4,2),(4,-1),(4,3).(2)(m,n)在二、四象限的(2,-1),(2,3),(-1,2),(3,2),(3, 4),(4,2),(4,-1),(4,3),所选出的m,n在第二、三四象限的概率为:P=点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.