《山西省实验中学2022-2023学年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省实验中学2022-2023学年中考考前最后一卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )ABCD2如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30,则下列结论正确的个数为( )DC=3OG;
2、(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D43下列运算结果是无理数的是()A3BCD4不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥5一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 6要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()ABCD7如图,在四边形A
3、BCD中,对角线 ACBD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点若AC=10,BD=6,则四边形EFGH的面积为()A20B15C30D608二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD9下列各数中,为无理数的是()ABCD10下列运算正确的是( )ABCD11如图所示,如果将一副三角板按如图方式叠放,那么 1 等于( )ABCD12如图,在中,则等于( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若代数式在实数范围内有意义,则x的取值范围是_14如图,在ABC中,C90,AC8,BC6,点D是AB的中
4、点,点E在边AC上,将ADE沿DE翻折,使点A落在点A处,当AEAC时,AB_15如图,在等腰ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_cm16如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合若BE=3,则折痕AE的长为_17如图,已知在RtABC中,ACB90,AB4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1S2等_18计算:=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB
5、、AFD的平分线交于P点求证:PEPF20(6分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太职学院足球场作为一个重要比赛场馆占地面积约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位21(6分)RtABC中,ABC=90,以AB为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接
6、OC交DE于点F,若OF=CF,求A的大小22(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E(1)求证:DCEBFE;(2)若AB=4,tanADB=,求折叠后重叠部分的面积23(8分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上24(10分)如图,O是ABC的外接圆,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE(1)求证:DB=DE;(2)求证:直线CF为O的切线;(3)若CF=4,求图中阴影部分的面积25(10分
7、)如图,矩形ABCD中,AB4,BC6,E是BC边的中点,点P在线段AD上,过P作PFAE于F,设PAx(1)求证:PFAABE;(2)当点P在线段AD上运动时,设PAx,是否存在实数x,使得以点P,F,E为顶点的三角形也与ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的D与线段AE只有一个公共点时,请直接写出x满足的条件: 26(12分)计算:|2|+2cos30()2+(tan45)127(12分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;(2)求三辆
8、汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.2、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30,OAG=AOG=30,GOE=90-AOG=90-3
9、0=60,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.3、B【解析】根据二次根式的运算法则即可求出答案【详解】A
10、选项:原式326,故A不是无理数;B选项:原式,故B是无理数;C选项:原式6,故C不是无理数;D选项:原式12,故D不是无理数故选B【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型4、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状5、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.6、A【解析】
11、根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.7、B【解析】有一个角是直角的平行四边形是矩形利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可【详解】点E、F分别为四边形ABCD的边AD、AB的中点,EFBD,且EF=BD=1同理求得EHACGF,且EH=GF=AC=5,又ACBD,EFGH,FGHE且EFFG四边形EFGH是矩形四边形EFGH的面积=EFEH=15=2,即四边形EFGH的面积是2故选B【点睛】本题考查的是中点四边形解题时,利用了矩形的判定以及矩形的定理,矩形的判定
12、定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形8、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.9、D【解析】A=2,是有理数;B=2,是有理数;C,是有理数;D,是无理数,故选D.10、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D.
13、 ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.11、B【解析】解:如图,2=9045=45,由三角形的外角性质得,1=2+60=45+60=105故选B 点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键12、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义二、填空题:(本大题共6个小题,每小题
14、4分,共24分)13、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可解:在实数范围内有意义,x-12,解得x1故答案为x1本题考查的是二次根式有意义的条件,即被开方数大于等于214、或7 【解析】分两种情况:如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: DA E=A,A D=AD=5, 由矩形性质和勾股定理可以得出结论: A B=;如图2, 作辅助线, 构建矩形A MNF,同理可以求出A B的长.【详解】解:分两种情况:如
15、图1, 过D作DGBC与G, 交A E与F, 过B作BHA E与H,D为AB的中点,BD=AB=AD,C=,AC=8,BC=6,AB=10,BD=AD=5,sin ABC=,DG=4,由翻折得: DA E=A, A D=AD=5,sinDA E=sin A=.DF=3,FG=4-3=1,AEAC,BCAC,AE/BC,HFG+DGB=,DGB=,HFG=,EHB=,四边形HFGB是矩形,BH=FG=1,同理得: A E=AE=8 -1=7,AH=AE-EH=7-6=1,在RtAHB中 , 由勾股定理得: A B=. 如图2, 过D作MN/AC, 交BC与于N,过A 作A F/AC, 交BC的延
16、长线于F,延长A E交直线DN于M, AEAC,A MMN, A EAF,M=MAF=,ACB=,F=ACB=,四边形MA FN県矩形,MN=AF,FN=AM,由翻折得: A D=AD=5,RtAMD中,DM=3,AM=4,FN=AM=4,RtBDN中,BD=5,DN=4, BN=3,A F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,RtABF中, 由勾股定理得: A B=;综上所述,AB的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.15、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计
17、算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关16、6【解析】试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,AE=CE,设AB=AO=OC=x,则有AC=2x,ACB=30,在RtABC中,根据勾股定理得:BC=x,在RtOEC中,OCE=30,OE=EC,即BE=EC,BE=3,OE=3,EC=
18、6,则AE=6故答案为6.17、【解析】试题解析: 所以 故答案为18、【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:原式=.故答案为:.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析.【解析】由圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB、AFD的平分线交于P点,继而可得EM=EN,即可证得:PEPF【详解】四边形内接于圆,平分,平分,【点睛】此题考查了圆的内接多边形的性质以及圆周角定理此题难度不大,注意掌握数形结合思想的应用20、原计划
19、每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.21、(1)ODE=90;(2)A=45.【解析】分析:()连接OE,BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判定和定理解答即可详解:()连接OE,BD AB是O的直径,ADB=90,CDB=90 E点是BC的中点,DE=BC=BE OD=OB,OE=OE,ODEOBE,ODE=OB
20、E ABC=90,ODE=90; ()CF=OF,CE=EB,FE是COB的中位线,FEOB,AOD=ODE,由()得ODE=90,AOD=90 OA=OD,A=ADO=点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答22、(1)见解析;(2)1【解析】(1)由矩形的性质可知A=C=90,由翻折的性质可知A=F=90,从而得到F=C,依据AAS证明DCEBFE即可;(2)由DCEBFE可知:EB=DE,依据AB=4,tanADB=,即可得到DC,BC的长,然后再RtEDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积【详解】解:(
21、1)四边形ABCD是矩形,A=C=90,AB=CD,由折叠可得,F=A,BF=AB,BF=DC,F=C=90,又BEF=DEC,DCEBFE;(2)AB=4,tanADB=,AD=8=BC,CD=4,DCEBFE,BE=DE,设BE=DE=x,则CE=8x,在RtCDE中,CE2+CD2=DE2,(8x)2+42=x2,解得x=5,BE=5,SBDE=BECD=54=1【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等23、见解析【解析】先连接AC,根据菱形性质证明EACFCA
22、,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.四边形ABCD是菱形,DA=DC,BD与AC互相垂直平分,EAC=FCA. AE=CF,AC=CA, EACFCA, ECA=FAC, GA=GC, 点G在AC的中垂线上,点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.24、(1)证明见解析;(2)证明见解析;(3)【解析】(1)欲证明DB=DE.,只要证明DBE=DEB;(2)欲证明CF是O的切线.,只要证明BCCF即可;(3)根据S阴影部分S扇形SOBD计算即可【详解】解:(1)E是ABC的内心,BAE=CAE,
23、EBA=EBC,BED=BAE+EBA,DBE=EBC+DBC,DBC=EAC,DBE=DEB,DB=DE(2)连接CDDA平分BAC,DAB=DAC,BD=CD,又BD=DF,CD=DB=DF,BCCF,CF是O的切线(3)连接OD O、D是BC、BF的中点,CF4, OD2. CF是O的切线,BOD为等腰直角三角形 S阴影部分S扇形SOBD 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点25、(1)证明见解析;(2)3或(3)或0【解析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不
24、确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解(3)此题首先应针对点的位置分为两种大情况:与AE相切, 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围【详解】(1)证明:矩形ABCD,ADBC. PAF=AEB.又PFAE, PFAABE.(2)情况1,当EFPABE,且PEF=EAB时,则有PEAB四边形ABEP为矩形,PA=EB=3,即x=3.情况2
25、,当PFEABE,且PEF=AEB时,PAF=AEB,PEF=PAF.PE=PA.PFAE,点F为AE的中点, 即 满足条件的x的值为3或(3) 或【点睛】两组角对应相等,两三角形相似.26、1【解析】本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可【详解】解:原式2+23+11【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算27、(1);(2)【解析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,至少有两辆汽车选择B通道通过的概率为【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键