《几何画板在初中数学教学中的作用.pdf》由会员分享,可在线阅读,更多相关《几何画板在初中数学教学中的作用.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 几何画板在初中数学教学中的作用 李莉军 摘要:数学是研究现实世界空间形式和数量关系的一门系统性、逻辑性及相关性较强的学科。几何画板作为一个有力的数学教学工具,作图方便准确,色彩鲜艳,富有动感,可使课堂高潮迭起,妙趣横生,从根本上改变了数学学科枯燥、乏味的特点,极大限度地激发了学生的学习热情。本文结合作者在初中数学教学中使用几何画板的一些经验,和大家探讨下几何画板在其中的作用。关键词:几何画板 初中数学 初中函数 几何变换 一、传统的教学模式 传统的数学课基本上都是以这样的方式进行:复习旧知识引入新课学习新概念和定理例题讲解学生模仿性解题教师点评、总结。这种教学模式下学生的发展还是基本上以老师
2、为中心,在很大程度上还处于老师讲学生听的状态,并没有使课堂真正成为数学活动的教学。新课标的数学大纲明确规定:教师应该帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的教学知识与技能、数学思想和方法,获得广泛的数学活动的经验。因此,为适应新的形势,教师的观念要更新,特别是课堂教学的模式要改革,要能体现出“向课堂要效率,向教改要质量”的教学原则和“面向全体,因材施教”的教学思想,完善教学模式,改进教学方式。二、要想有进步必须思变。如今,信息技术在数学中的应用越来越得到一线教师的重视与青睐,也引起了许多教育工作者对这个问题的思考与探索。一线教师普遍在不断提高信息技术的运用水平,特别是计算机操作
3、及软件使用水平以适应新的形势。对于数学教师,使用的动画制作软件主要有几何画板、Authorware、Flash 等。虽说 Flash 与 Authorware 在动画制作上很有利,但在操作上比较复杂,难以掌握,不太符合日常工作繁重的教师实际。而几何画板具有容易学习、操作简单、功能强大等特点,已成为广大中学数学教师进行信息技术与数学教学整合的首选软件。几何画板在数学教学中已发挥着越来越重要的作用。几何画板是 Windows 环境下的一个动态的数学工具软件。它提供了画点、画线(线段、射线、直线)、画圆(正圆)的工具,以及旋转、平移、缩放、反射等图形变换功能。几何画板又不同于其他绘图工具,它能动态地
4、保持给定的几何关系,便于学生自行动手在变化的图形中发现恒定不变的几何规律,从而打破了千百年来数学学习就是一支笔一张纸的纯理论局面,成为提倡数学实验,培养学生创新能力的有效工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态、开放、新型的教学环境。本文笔者就重点谈谈几何画板在初中数学课堂教学实践中的简单应用。三、几何画板简介与教学中的实际应用(一)几何画板简介 几何画板是适用于数学、平面几何、物理的矢量分析、作图,函数作图的动态几何工具。由美国 Key Curriculum Press公司制作并出版的优秀教育软件,1996 年该公司授权人民教育出版社在中国发行该软件的中文版。正如其名
5、“21 世纪动态几何”,它能够动态地展现出几何对象的位置关系、运行变化规律,是数学与物理教师制作课件的“利剑”!(二)几何画板在教学中的应用案例 1、几何画板直观的反映函数中两个变量的关系 例一:利用几何画板帮助学生理解函数与图像的关系,化抽象为具体。函数及其图像对于初一的学生难于理解,为了展示图像对函数关系的动态反映,把抽象变为具体,以课堂演示2xy 这条直线的形成为例。打开几何画板,建立坐标系,先在 x 轴上取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出 2x,“度量”菜单下的“绘制点”绘出点 B(x,2x),最后将点 B 设置为“显示”菜单下的“追踪绘制的点”。师
6、:图中的点 B 是满足2xy 函数关系的点,大家知道这样的点有多少个吗?生:无数个 师:这无数个满足2xy 函数关系的点有什么特点呢?请大家仔细观察(慢慢的拖动图 1 中的 A 点)拖动的过程中请同学们注意变化的点 B 的横纵坐标的数值,是否满足2xy 关系?生:都满足。师:这些点形成了什么图形?生:点动成线,形成了一条直线。图 1 这个演示的两个作用:帮助学生理解函数图像是由无数个满足函数关系的点形成的 弥补了描点法画图像只能由有限个点来猜测图像形状的弱点,仅仅是在纸上描点,学生不禁会问为什么图像就是直线呢?通过课件演示,学生清楚地看到了直线的形成过程,印象十分深刻。例二:利用几何画板形象地
7、反映双曲线的图像特点,深化对图像的理解。反比例函数的图像双曲线的特点,学生也不好把握,什么叫“与坐标轴无限接近,但永不相交”?为了帮助学生理解双曲线的特点,可以利用几何画板来形象地展示这一特点。首先建立坐标系,在 x 轴上取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出x6,“度量”菜单下的“绘制点”绘出点 B(x,x6),最后依次选中点 A、B,选择“构造”菜单中的“轨迹”,完成双曲线的绘制。师:当 x0 时,x 越大,x6的值如何变化?生:x 越大,x6越小。师:大家能想象随着 x 的增大,点(x,x6)的变化吗?(学生思索)师(演示向右拖动图 2 中的点 A),横坐
8、标 x 的数值越来越大,大家观察双曲线上的点有什么特点?生:向右运动,与 x 轴的距离越来越小。师:图像上的点会与 x 轴相交吗?生:不会,因为 y 不为 0。再观察双曲线与 y 轴的关系,师生共同总结双曲线特点:无限接近坐标轴,但永不相交。图 2 通过这样的演示,学生对双曲线的特点有了更加直观的感受和深刻的印象,同时更进一步帮助学生认识了函数和图像的关系。例三:利用几何画板帮助学生理解函数的自变量的取值范围对函数图像的影响。初学函数时,学生往往无法结合自变量的取值范围去画函数图像,比如函数)2x2-2xy(,同学容易画成直线而不是线段。打开几何画板,在 x 轴上取2,2范围的线段,在线段上任
9、取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出 2x,“度量”菜单下的“绘制点”绘出点 B(x,-x+2),最后将点 B 设置为“显示”菜单下的“追踪绘制的点”,并向坐标轴引垂线。图 3 师:(拖动图 3 中的点 A)请同学们观察图中自变量 x 的取值范围?生:2x2 师:观察最左端点 B 能到达的位置,最右端能到达的位置?生:最左端到点4,2,最右端到点0,2 师:观察点 B 形成的图像是什么形状的?生:线段 师:为什么图像不是直线而是线段呢,这是由什么决定的?生:由自变量限制在一定范围内决定。通过几何画板的动态演示,学生在变化的点、变化的横纵坐标中去寻找规律,去理解
10、自变量和自变量的函数这两个变量之间的关系,突破了传统教学无法展示点的变化,从而一切只能靠想象,而初一的学生抽象思维能力又比较弱的现实。通过几何画板的演示,将抽象的思维过程形象地展示出来,学生很容易接受。2、几何画板在初中图形变换方面的尝试 例一:利用几何画板展现平移、轴对称、旋转的动态过程。初中阶段主要学习三种全等变换:平移、轴对称、旋转,一种相似变换:位似。这是新课改加强的部分,帮助学生从动态变换的角度去理解平面几何。在讲解三角形全等的条件时,设计这样一个问题去理解“全等变换”:如图 4,AB=DE,画出与ABC 全等的DEF。同学通过反复尝试、互相补充画出了四个三角形与ABC 全等(如图
11、4)。图 4 师:大家通过尝试得到了这四个三角形,那么现在我们来考虑一下它们是不是有章可循的呢?图中的绿色三角形是如何得到的?(1)连接 AD,在线段 AD 上取点 M,依次选中点 A、M,选择“变换”菜单下的“标记向量”,然后选中ABC,选择“变换”下的“平移”,按标记的向量平移。师拖动点 M(图 5),三角形开始平移,引导学生观察三角形动态的平移过程。图 5 生:图中的绿色三角形是通过平移得到的。师:图中的红色三角形是如何得到的呢?生:将图中的绿色三角形翻折得到的。(2)双击 DE,选中图中的绿色三角形(图 6),选“变换”下的“反射”,作出红色三角形。图 6 师:图中的粉红色三角形是如何
12、得到的呢?(3)选中 DE 的中点,双击它,选择红色三角形,按标记的角度旋转 180。(如图 7)图 7 师引导学生观察三角形旋转的过程,生:粉红色三角形是由红色三角形绕 DE 中点旋转 180得到的。师:黑色三角形是如何得到的呢?生:由粉色三角形翻折得到的。通过几何画板动态的演示平移、旋转的过程,形象生动的反映了各种变换,加深了学生对全等变换的理解,同时也提示学生学会用全等变换的眼光去认识和看待图形。例二:利用几何画板在变化中寻求特殊,发现解题的思路。在初三总复习阶段有这样一道题:如图,ABC和111CBA均为等边三角形,点 O 即是 AC 的中点,又是11CA的中点,求11AA:BB的值。
13、打开几何画板,做等边ABC,取 AC 中点 O,再做等边111CBA,生 1:能不能将111CBA的位置放到一个比较特殊的位置去研究线段的比值呢?师在几何画板中选中点 A1,拖动它,旋转111CBA,学生观察寻找特殊位置。生 2:让1B点放到线段 AC 上是一个特殊位置。(如图 8)OCBAB1A1C1 图 8 生 3:让11CA放到 AC 上,会更简单。(如图 9)图 9 师:大家的想法很好,这是特殊值法。有没有一般位置的解题方法?师生共同得到了构造相似三角形的一般解法。师:111CBA在旋转的过程中,这两个黄色三角形始终保持相似吗?(学生思考)师演示在几何画板中旋转111CBA(图 10-
14、1,10-2),学生直观的看到,无论什么位置,这两个三角形始终相似。图 10-1 图 10-2 一道有一定难度的题目,在几何画板的帮助下,学生探索了图形的特殊位置,从中受到启发解决了问题,同时进一步研究了在变化的过程中不变的规律(三角形的相似关系不变)。学生经历了观察、猜想、从特殊到一般的思维过程,培养了学生的数学思维能力和创造力。例三:利用几何画板探索图形的发展变化,寻求辅助线的规律。(08 年的天津市中考 25 题)C A B E F M N 图 C A B E F M N 图 已知 RtABC 中,90ACB,CBCA,有一个圆心角为45,半径的长等于CA的扇形CEF绕点 C 旋转,且直
15、线CE,CF 分别与直线AB交于点 M,N()当扇形CEF绕点 C 在ACB的内部旋转时,如图,求证:222BNAMMN;思路点拨:考虑222BNAMMN符合勾股定理的形式,需转化为在直角三角形中解决可将ACM沿直线CE对折,得DCM,连DN,只需证BNDN,90MDN就可以了 ()当扇形 CEF 绕点 C 旋转至图的位置时,关系式222BNAMMN是否仍然成立?若成立,请证明;若不成立,请说明理由 这是一道考察图形变换的几何证明题,学生对第二问的辅助线添加方法感到有些困难。如果学生能够从第一问到第二问的联系上,从旋转过程中图形中的量的变化和不变上去考虑,也许就要简单一些。在讲解完第一问之后,
16、可以利用几何画板将扇形旋转的过程展现出来,帮助学生梳理本题的思路,总结提升,从而得到第二问的辅助线:师:在第一问中通过什么全等变换来构造的辅助线呢?生:轴对称变换,翻折AMC和CNB,构造全等三角形。师:轴对称变换的目的?生:将三条线段 AM、BN、MN 集中到了直角MNA中。师:那么如果将扇形绕点 C 旋转一周,结论是不是不变呢?(学生思考)打开几何画板,做等腰三角形 ABC 和扇形 CEF,双击 CE,选中点 A,选择“变换”下的“反射”,作出点 A,连接CA,构造三角形 MNA。师在几何画板中演示,选中点 E,旋转扇形 CEF,学生观察图中的红色三角形。(见下图)图 12-1 图 12-
17、2 图 12-3 图 12-4 图 12-5 图 12-6 生:无论扇形 CEF 旋转到什么位置,线段 AM、BN、MN 围成的三角形都是直角三角形,结论不变。师:大家能发现红色三角形构造的规律吗?生:都是翻折AMC和CNB,构造全等三角形。师:对,大家已经在变化的图形中找到了不变的规律,无论扇形的位置在哪儿,只需分别以 CM、CN 为轴翻折AMC和CNB,构造全等三角形即可。通过这样的演示,训练学生在变化的图形过程中去观察、比较、归纳、总结图形的规律,即提高了学生学习几何的兴趣,也锻炼了学生在复杂变化的图形中去抓住本质规律的能力,提升了学生的数学思维品质。四、对几何画板与数学课程整合的心得体
18、会 教育教学必须适应新的形势,更新观念,改革创新。因此,教师要用新的教学理念武装自己,而新的课程标准更是向数学教师提出了更高的要求。“数学课程的设计和实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”作为教育工作者,身处教育教学法改革的前沿,正确的态度应该是积极采用现代化的信息技术教育手段,接受挑战,真正从数学教学规律自身特点出发,将信息技术与数学课程实施有机整合,以丰富课堂内容,改变教与学的方式,呈现给学生形象生动、通俗易懂而又激发思维、体现自主建构的课堂氛围,使信息技术成为黑板、粉笔、三角板、模型一样得心应手的工具,让学生切身体会数学的美,全面提升课堂效率,做好新课程改革。这样数学乃至整个教育才会有创新,才会有发展。作者简介:李莉军:中学二级教师,本科,研究方向为数学教学