《2009届高三数学第二轮专题复习教案:平面向量.pdf》由会员分享,可在线阅读,更多相关《2009届高三数学第二轮专题复习教案:平面向量.pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2009 届高三数学二轮专题复习教案平面向量 一、本章知识结构:二、重点知识回顾 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:用有向线段表示;用字母a、b等表示;平面向量的坐标表示:分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj,),(yx叫做向量a的(直角)坐标,记作(,)ax y,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0)。22axy;若),(11yxA,),(22yxB,则1212,yyxxAB,222
2、121()()ABxxyy 3.零向量、单位向量:长度为 0 的向量叫零向量,记为0;长度为 1 个单位长度的向量,叫单位向量.(注:|aa就是单位向量)4.平行向量:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.向量a、b、c平行,记作abc.共线向量与平行向量关系:平行向量就是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6.向量的加法、减法:求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。向量的减法向量a加上的b相反向量,叫做a与b的差。即:a b=a+(b);差向量的意义:OA=a,OB=b,则BA=a b 平 面 向 量 的 坐
3、 标 运 算:若11(,)ax y,22(,)bxy,则ab),(2121yyxx,ab),(2121yyxx,(,)axy。向量加法的交换律:a+b=b+a;向量加法的结合律:(a+b)+c=a+(b+c)7实数与向量的积:实数与向量a的积是一个向量,记作:a(1)|a|=|a|;(2)0 时a与a方向相同;0 时a与a方向相反;=0 时a=0;(3)运算定律 (a)=()a,(+)a=a+a,(a+b)=a+b 8 向量共线定理 向量b与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数,使b=a。9平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内
4、的任一向量a,有且只有一对实数1,2 使a=11e+22e。(1)不共线向量1e、2e叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底1e、2e的条件下进行分解;(4)基底给定时,分解形式惟一.1,2 是被a,1e,2e唯一确定的数量。10.向量a和b的数量积:ab=|a|b|cos,其中0,为a和b的夹角。|b|cos称为b在a的方向上的投影。ab的几何意义是:b的长度|b|在a的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。若a=(1x,1y),b=(x2,2y),则2121yyxxba 运算律:a b=ba,
5、(a)b=a(b)=(ab),(a+b)c=ac+bc。a和b的夹角公式:cos=a bab222221212121yxyxyyxx 2aaa|a|2=x2+y2,或|a|=222ayx|ab|a|b|。11两向量平行、垂直的充要条件 设a=(1x,1y),b=(2x,2y)abab=0,baab=1x2x+1y2y=0;ba/(a0)充要条件是:有且只有一个非零实数,使b=a。向量的平行与垂直的坐标运算注意区别,在解题时容易混淆。12.点 P 分有向线段21PP所成的比的:21PPPP,P 内分线段21PP时,0;P 外分线段21PP时,0.定比分点坐标公式、中点坐标公式、三角形重心公式:1
6、12121yyyxxx 1、222121yyyxxx、)3,3(321321yyyxxx 三、考点剖析 考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。如果1e和2e是同一平面内的两个不共线向量,那么对该平面内的任一向量a有且只有一对实数1、2,使a=11e+22e.注意:若1e和2e是同一平面内的两个不共线向量,【命题规律】有关向量概念和向量的基本定理的命
7、题,主要以选择题或填空题为主,考查的难度属中档类型。例 1、(2007 上海)直角坐标系xOy中,ij,分别是与xy,轴正方向同 向 的 单 位 向 量 在 直 角 三 角 形ABC中,若jkiACjiAB3,2,则k的可能值个数是()1 2 3 4 解:如图,将 A 放在坐标原点,则 B 点坐标为(2,1),C点坐标为(3,k),所以 C 点在直线 x=3 上,由图知,只可能 A、B 为直角,C 不可能为直角所以 k 的可能值个数是 2,选 B 点评:本题主要考查向量的坐标表示,采用数形结合法,巧妙求解,体现平面向量中的数形结合思想。例 2、(2007 陕西)如图,平面内有三个向量OA、OB
8、、OC,其中与OA与OB的夹角为120,OA与OC的夹角为 30,且|OA|OB|1,|OC|32,若OCOA+OB(,R),则+的值为 .解:过 C 作OA与OC的平行线与它们的延长线相交,可得平行四边形,由角 BOC=90角 AOC=30,OC=32得平行四边形的边长为 2 和 4,2+4=6 点评:本题考查平面向量的基本定理,向量 OC 用向量 OA 与向量OB 作为基底表示出来后,求相应的系数,也考查了平行四边形法则。考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断
9、两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。例 3、(2008 湖北文、理)设 a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)c=()A.(15,12)B.0 C.3 D.11 解:(a+2b)(1,2)2(3,4)(5,6),(a+2b)c(5,6)(3,2)3 ,
10、选C 点评:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字。例 4、(2008 广东文)已知平面向量),2(),2,1(mba,且ab,则ba32=()A(-2,-4)B.(-3,-6)C.(-4,-8)D.(-5,-10)解:由ab,得 m4,所以,ba32(2,4)(6,12)(4,8),故选(C)。点评:两个向量平行,其实是一个向量是另一个向量的倍,也是共线向量,注意运算的公式,容易与向量垂直的坐标运算混淆。例 5、(2008 海南、宁夏文)已知平面向量a=(1,3),b=(4,2),ab与a垂直,则是()A.1
11、B.1 C.2 D.2 解:由于4,32,1,3,abaaba 43320,即101001 ,选 点评:本题考查简单的向量运算及向量垂直的坐标运算,注意不要出现运算出错,因为这是一道基础题,要争取满分。例 6、(2008 广东理)在平行四边形 ABCD 中,AC 与 BD 交于点 O,E是线段OD的中点,AE的延长线与CD交于点F.若aAC,bBD,则AF()A1142ab B.2133ab C.1124ab D.1233ab 解:aAO21,baODAOAD2121,baabaADAOAE412121212121)(21,由 A、E、F 三点共线,知1,AEAF 而满足此条件的选择支只有B,
12、故选 B.点评:用三角形法则或平行四边形法则进行向量的加减法运算是向量运算的一个难点,体现数形结合的数学思想。例 7、(2008 江苏)已知向量a和b的夹角为0120,|1,|3ab,则|5|ab 解:2222552510ababaa bb=22125 110 1 33492 ,5ab7 点评:向量的模、向量的数量积的运算是经常考查的内容,难度不大,只要细心,运算不要出现错误即可。考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应 用,求点分有向线段所成比时,可借助图形来帮助理解。【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,
13、经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。例 8、(2008 湖南理)设 D、E、F 分别是ABC 的三边 BC、CA、AB上的点,且2,DCBD2,CEEA2,AFFB则ADBECF与BC()A.反向平行 B.同向平行 C.互相垂直 D.既不平行也不垂直 解:由定比分点的向量式得:212,1233ACABADACAB同理,有:12,33BEBCBA12,33CFCACB以上三式相加得 1,3ADBECFBC 所以选 A.点评:利用定比分点的向量式,及向量的运算,是解决本题的要点.考点四:向量与三角函数的综合问题【内容解读】向量与三角函数
14、的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。例 9、(2008 深圳福田等)已知向量(3sin,cos),(cos,cos)axxbxx,函数()21f xa b (1)求()f x的最小正周期;(2)当,62x时,若()1,f x 求x的值 解:(1)2()2 3sincos2cos1f xxxx3sin2cos2xx2sin(2)6x.所以,T.(2)由()1,f x 得1sin 262x,,62x,72
15、,626x 5266x 3x 点评:向量与三角函数的综合问题是当前的一个热点,但通常难度不大,一般就是以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,而考查的主体部分则是三角函数的恒等变换,以及解三角形等知识点.例 10、(2007 山东文)在ABC中,角ABC,的对边分别为tan3 7abcC,(1)求cosC;(2)若52CB CA,且9ab,求c 解:(1)sintan3 73 7cosCCC,又22sincos1CC 解得1cos8C tan0C,C是锐角 1cos8C(2)由52CB CA,5cos2abC,20ab 又9ab 22281aabb 2241ab 222
16、2cos36cababC 6c 点评:本题向量与解三角形的内容相结合,考查向量的数量积,余弦定理等内容。例 11、(2007 湖北)将2cos36xy的图象按向量24,a平移,则平移后所得图象的解析式为()2cos234xy 2cos234xy 2cos2312xy 2cos2312xy 解:由向量平移的定义,在平移前、后的图像上任意取一对对应点,P x y,,P x y,则24,a,P Pxx yy,24xxyy,代入到已知解析式中可得选 点评:本题主要考察向量与三角函数图像的平移的基本知识,以平移公式切入,为中档题。注意不要将向量与对应点的顺序搞反,或死记硬背以为是先向右平移4个单位,再向
17、下平移 2个单位,误选 考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。【命题规律】命题多以解答题为主,属中档题。例 12、(2008 广东六校联考)已知向量a(cos23x,sin23x),b(2sin2cosxx,),且 x0,2(1)求ba(2)设函数baxf)(+ba,求函数)(xf的最值及相应的x的值。解:(I)由已知条件:20 x,得:(2)2sin23sin2cos23cossin2)(xxxxxxfxx2cossin2 因为:20 x,所以:1sin0 x 所以,只有当:21x时,23)(maxx
18、f 0 x,或1x时,1)(minxf 点评:本题考查向量、三角函数、二次函数的知识,经过配方后,变成开口向下的二次函数图象,要注意sinx 的取值范围,否则容易搞错。考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决【命题规律】命题多以解答题为主
19、,属中等偏难的试题。例 13、如图在 RtABC 中,已知 BC=a,若长为 2a 的线段 PQ 以 A 为中点,问PQ与BC的夹角取何值时,BPCQ的值最大?并求出这个最大值。解:以直角顶点 A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系。设|AB|=c,|AC|=b,则 A(0,0),B(c,0),C(0,b).且|PQ|=2a,|BC|=a.设 点P的 坐 标 为(x,y),则Q(-x,-y),.22),(),(),(),(yxPQbcBCbyxCQycxBP.|cos.)()()(222abycxPQBCPQBCbycxyxbyyxcxCQBPcx-by=a2co
20、s.BPCQ=-a2+a2cos.故当 cos=1,即=0(PQBC与方向相同)时,BPCQ的值最大,其最大值为 0.点评:本题主要考查向量的概念,运算法则及函数的有关知识,平面向量与几何问题的融合。考查学生运用向量知识解决综合问题的能力。四、方法总结与 2009 年高考预测 O x A C B a 例 13 图 y A C B a Q P(一)方法总结 1.以“基底”形式出现的向量问题通常将题中的化为以某一点为统一起点,再进行向量运算会非常方便;2.以坐标形式出现的向量问题可以尽可能利用解析思想,转化为函数或方程方法求解;(二)09 高考预测 预计向量基本概念、向量基本运算等基础问题,通常为选择题或填空题出现;而用向量与三角函数、解三角形等综合的问题,通常为解答题,难度以中档题为主。五、复习建议 1、平面向量部分的复习应该注重向量的工具作用,紧紧围绕数形结合思想,扬长避短,解决问题;2、平面向量与三角函数的交汇是近年来的考查热点,一般服出现在解答题的前三大题里,在复习中,应加强这种类型试题的训练。