《三角形内切圆几个公式的应用.pdf》由会员分享,可在线阅读,更多相关《三角形内切圆几个公式的应用.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、三角形内切圆几个公式的应用公式 1.ABC,C90,BCa,ACb,ABc,内切圆半径为 r,则 r12(a+b-c)。证明:如图 1,O 内切于ABC,D、E、F 为切点,由切线长定理知:AF=AE,CE=CD,BF=BD。a+b-c=(BD+DC)+(AE+EC)-(AF+BF)=2CE=2r。r12(a+b-c)。点评:此公式只适用于直角三角形。公式 2.若 O 为 ABC 的内心,则 AOB=90+12ACB。证明:如图 2,O 为 ABC 的内切圆,1=12CAB,2=12ABC,AOB=180-(1+2)=180-12(CAB+ABC)=180-12(180-ACB)=90+12A
2、CB。公式 3.如图 3,在ABC 中,内切圆 O 和 BC、AC、AB 分别相切于点 E、F、D,则FDE=90-12ACB。证明:连结 OE、OF,则 OFAC,OEBC,四边形 CFOE 内角和为 360,FOE+C=180,又因为 FDE=12FOE,FDE=90-12ACB。点评:由在同一个圆中,同弧所对的圆周角相等可知,即使D 点不为切点,只要 FDE 所对的弧为EF,都有 FDE=90-12A C B D E F O 图 1O A B C 图 21 2 O A B C D E F 图 3ACB。公式 4.ABC 的三边长分别为 a、b、c,其面积为 S,内切圆半径为 r,则 r=
3、2sabc。证明:如图 4,I 内切于ABC,连结 IA,IB,IC,S=S AIB+S AIC+S BIC=12ABr+12ACr+12CBr=12cr+12ar+12br=12(a+b+c)r r=2sabc。点评:.三角形的面积等于周长与内切圆半径的乘积的一半,即 S=12pr(p 表示周长,r 表示内切圆半径),这是一个很有用的结论,在解题时可以直接引用。.若C=90,则有 r=ababc。应用以上我们所总结的几个公式去解答某些有关三角形内切圆的问题时,能让我们快速的找到准确答案。【练习:】.在ABC 中,BC12,AC13,AB5,则此三角形的内切圆的半径r=_.若 O 为 ABC 的内心,ACB=80,则AOB=_.在ABC 中,内切圆 O 和 BC、AC、AB 分别相切于点E、F、D,若ACB=70,则FDE=_.ABC 中,AC=AB=5,BC=6,求 ABC 的半径长。.已知 ABC 为等腰直角三角形,其腰长为 1,那么它的内切圆的半径r=_.【附答案:】.2.130.55.32A B C I 图 4.222