《第27章 量子力学初步.ppt》由会员分享,可在线阅读,更多相关《第27章 量子力学初步.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 量子力学是描述微观粒子运动规律的学科。它是现代物理学的理论支柱之一,被广泛地应用于化学、生物学、电子学及高新技术等许多领域。本章主要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论来说明量子力学处理问题的一般方法。27.1 波函数及其统计解释波函数及其统计解释一、波函数一、波函数回顾:德布罗意关于物质的波粒二象性假设速度为质量为的自由粒子一方面可用 能量 和 动量 来描述它的粒子性另一方面可用 频率 和 波长 来描述它的波动性 波函数是描述具有波粒二象性的微观客体的量子状态的函数,知道了某微观客体的波函数后,原则上可得到该微观客体的全部知识。下面从量子力学的基本观点出发,建立自由粒子的
2、波函数。在量子力学中用复数表达式:应用欧拉公式取实部 应用德布罗意公式即即即的自由粒子的波函数为沿 X方向匀速直线运动 在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿 X 轴正向传播的平面单色简谐波的波动方程沿 方向匀速直线运动的自由粒子的波函数为自由粒子的波函数 自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。不是常量,其波函数所描述的德布罗意波就不是平面波。对于处在外场作用下运动的非自由粒子,其能量和动量外场不同,粒子的运动状态及描述运动状态的波函数也不相同。微观客体的运动状态可用波函数来描述,这是量子力学的一个基本假设。二、波函数的统计解释二、波函数的统计
3、解释 设描述粒子运动状态的波函数为 ,则 空间某处波的强度与在该处发现粒子的概率成正比;在该处单位体积内发现粒子的概率(概率密度)与 的模的平方成正比。是的共轭复数德布罗意波又称 概率波概率波波函数又称 概率幅概率幅取比例系数为1,即1926 年提出了对 波函数的统计解释因概率密度故在 矢端的体积元 内发现粒子的概率为 在波函数存在的全部空间 V 中必能找到粒子,即在全部空间 V 中 粒子出现的概率为1。此条件称为 波函数的归一化条件满足归一化条件的波函数称为 归一化波函数波函数具有统计意义,其函数性质应具备三个标准条件:波函数的三个标准条件:连续因概率不会在某处发生突变,故波函数必须处处连续
4、;单值因任一体积元内出现的概率只有一种,故波函数一定是单值的;有限因概率不可能为无限大,故波函数必须是有限的;以一维波函数为例,在下述四种函数曲线中,只有一种符合标准条件符合不符合不符合不符合三、德布罗意波与经典波三、德布罗意波与经典波德布罗意波经 典 波是振动状态的传播不代表任何物理量的传播波强(振幅的平方)代表通过某点的能流密度波强(振幅的平方)代表粒子在某处出现的概率密度概率密度分布取决于空间各点波强的比例,并非取决于波强的绝对值。能流密度分布取决于空间各点的波强的绝对值 因此,将波函数在空间各点的振幅同时增大 C倍,不影响粒子的概率密度分布,即 和C 所描述德布罗意波的状态相同。因此,
5、将波函数在空间各点的振幅同时增大 C倍,则个处的能流密度增大 C 倍,变为另一种能流密度分布状态。波函数存在归一化问题。波动方程无归一化问题。波函数存在归一化问题。某粒子的波函数为归一化波函数概率密度概率密度最大的位置令求积分得:积分得:得得 到到 归归 一一 化化 波波 函函 数数:概率密度得得令求求极大值的极大值的 x 坐标坐标解得解得另外两个解另外两个解处题设处题设处处最大27.2 不确定关系不确定关系海森伯因创立用矩阵数学描述微观粒子运动规律的矩阵力学,获1932年诺贝尔物理奖(注:不确定关系又称测不准关系,在上述表达式中的 和 都具有统计含义,分别代表有关位置和动量的方均根偏差。)称
6、为海森伯位置和动量的不确定关系,它说明,同时精确测定微观粒子的位置和动量是不可能的。微观粒子不能同时具有确定的位置和动量,位 置 的 不 确 定 量 该方向动量的不确定量同一时刻的关系1927年,德国物理学家海森伯提出电子束缝宽衍射图样电子通过单缝时发生衍射,概略地用一级衍射角所对应的动量变化分量 粗估其动量的不确定程度得即考虑到高于一级仍会有电子出现取从电子的单缝衍射现象不难理解位置和动量的不确定关系衍射图样单缝衍射一级暗纹条件德布罗意波长 缝宽 可用来粗估电子通过单缝时其位置 x 的不确定程度 根据右图可粗估 为了减小位置测量的不确定程度,可以减小缝宽 ,但与此同时,被测电子的动量的不确定
7、量 却变大了。与 的关系。同时为零,即微观粒子的位置和动量不可能同时精确测定,这是微观粒子具有波粒二象性的一种客观反映。不确定关系可用来划分经典力学与量子力学的界限,如果在某一具体问题中,普朗克常数可以看成是一个小到被忽略的量,则不必考虑客体的波粒二象性,可用经典力学处理。通常也作为不确定关系的一种简明的表达形式,它表明和不可能质量速度速度不确定量某飞行中的子弹m =0.01 kgv =500 m/sv =0.1 v 某原子中的电子m e=9.110 31 kgv e=210 6 m/sv e =0.1 v e 试应用不确定关系分别估算下述电子和子弹的位置不确定量根据位置和动量不确定关系 子
8、弹0.10.41.110 34(m)电 子0.10.42.910 10(m)电子的位置不确定量大到与原子的线度数量级(10 10 m)相同,因此,不可能精确测定电子处在原子中的位置。子弹的位置不确定量比原子的线度还要小许多个数量级,小到任何精密仪器都无法观测。因此,对宏观物体运动的描述,不受位置和动量的不确定关系的限制。10 6 m s-1若以氢原子的线度10 10 m 作为电子一氢原子中的电子速度 的数量级为电子速度的不确定量电子的质量 me为9.1110-31 kg的坐标不确定量由不确定关系因该电子速度远小于光速,可不考虑相对论效应,用 代入得5.7910 5 m s 1已大到与 的大小相
9、当。(1 1)粒子的坐标是不能)粒子的坐标是不能精确确定的;精确确定的;(2 2)粒粒子子的的动动量量是是不不能能精确测定的;精确测定的;(3 3)粒粒子子的的坐坐标标和和动动量量都都是不能精确确定的;是不能精确确定的;(4 4)以上结论都不对。)以上结论都不对。不确定关系说明不确定关系说明请请在放映状态下点在放映状态下点击你击你认为是对的答案认为是对的答案27.3 薛定谔方程薛定谔方程一、引一、引 言言经典力学牛顿力学方程根据初始条件可求出经典质点的运动状态经典质点有运动轨道概念不考虑物质的波粒二象性量子力学 针对物质的波粒二象性微观粒子无运动轨道概念运动状态波函数量子力学方程是否存在一个根
10、据某种条件可求出微观粒子的 量子力学中的 算符是表示对某一函数进行某种数学运算的符号。在量子力学中,一切力学量都可用算符来表示。这是量子力学的一个很重要的特点。算 符劈形算符数学运算符号拉普拉斯算符动量算符动能算符哈密顿算符含动、势能位矢算符力 学 量 算 符 统称 举 例若 作用在某函数 上的效果和 与某一常量 的乘积相当,即则称为 的 本征值称为 的 本征函数所描述的状态称为 本征态力学量的可能值是它的本征值力学量的平均值由下述积分求出二、薛定谔方程二、薛定谔方程获1933年诺贝尔物理学奖 1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为 的粒子在势能函数为 的势场中
11、运动,当其运动速度远小于光速时,它的波函数 所满足的方程为 它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。式中,为哈密顿算符,三、定态薛定谔方程三、定态薛定谔方程可分离变量,写成解释:若则积分解得将常量 归入 中,得波函数此外,对得 定态薛定谔方程故常量时间的函数空间的函数由对应一个可能态有一常量定态薛定谔方程势场只是空间函数即若粒子所在的有一个能量定值含时薛定谔方程波函数对应于一个可能态,则其概率密度与时间无关所描述的状态。它的重要特点是:所谓“定态”,就是波函数具有 形式波函数中的 称 定态波函数(有时简称 为波函数)。的函数形式也应满足统计的条件连续、单值、有限的标准条
12、件;归一化条件;对坐标的一阶导数存在且连续(使定态薛定谔方程成立)。定态问题是量子力学最基本的问题,我们仅讨论若干典型的定态问题。若已知势能函数 ,应用定态薛定谔方程可求解出定态波函数 ,并得到四、态叠加原理四、态叠加原理 为薛定谔方程的两个解,分别代表体系的两个可能状态。设为它们的线性叠加即为复常数将上式两边对时间求偏导数并乘以因都满足薛定谔方程即这表明:体系两个可能状态的叠加仍为体系的一个可能态。称为 态叠加原理27.4 一维无限深势阱一维无限深势阱粒子在某力场中运动,若力场的势函数 U 具有下述形式该势能函数称作一维无限深势阱。应用定态薛定谔方程可求出运动粒微观系统中,有关概率密度、能量
13、这是一个理想化的物理模型,子的波函数,有助于进一步理解在量子化等概念。阱内阱外只有因及要连续、有限,薛定谔方程才成立,在阱外故粒子在无限深势阱外出现的概率为零。设质量为 的微观粒子,处在一维无限深势阱中,该势阱的势能函数为阱外阱内建立定态薛定谔方程一维问题求定态薛定谔方程的通解阱内即令得此微分方程的通解为其三角函数表达形式为式中 和 为待定常数根据标准条件确定常数和并求能量 的可能取值以及在边界 和处又因得的取值应与阱外 连续,边界处的故得及时阱内 不合理 舍去的负值和正值概率密度相同。同一取得求归一化定态波函数由上述结果阱外阱内及得应满足归一化条件得积分归一化定态波函数概率密度能量量子化极不明显,可视为经典连续。间距太小间距太小在微观粒子可能取如,电子9.110 31 kg处在宽度 10-10 m (原子线度)的势阱中算得 37.7 eV能量量子化明显处在宽度 10 2 m (宏观尺度)的势阱中算得 37.7 10 -15 eV 能量量子化是微观世界的固有现象从能级绝对间隔看,从能级相对间隔看,则的各种能态中,随着 值增大,逐渐向经典过渡。一维无限深势阱中的微观粒子 (小结)能量 量子化称 基态能或 零点能相邻能级的能量间隔波函数好比驻波概率密度的 称节点位置节点位置极大的 称最概然位置最概然位置增大,节点数增多,最概然位置间隔变小。很大,概率密度趋近经典均匀分布。