《公式法教学设计教学设计.pdf》由会员分享,可在线阅读,更多相关《公式法教学设计教学设计.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 1 公式法 【总体说明】本节是因式分解的第 3 小节,占两个课时,这是第一课时,它主要让学生经历通过整式乘法的平方差公式的逆向运用得出因式分解的平方差公式的过程,发展学生的观察能力和逆向思维能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系。【学生知识状况分析】学生的技能基础:学生在上几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为今天的深入学习提供了必要的基础。学生活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方
2、法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验。【教学目标】学生在学习了用提取公因式法进行因式分解的基础上,本节课又安排了用公式法进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。因此,本课时的教学目标是:知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。数学能力:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力。情感与态度:在引导学生逆用乘法公式的过
3、程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法。【教学过程】本节课设计了六个教学环节:练一练想一想做一做议一议反馈练习学生反思。第一环节 练一练 1 2 活动内容:填空:(1)(x+3)(x3)=;(2)(4x+y)(4xy)=;(3)(1+2x)(12x)=;(4)(3m+2n)(3m2n)=。根据上面式子填空:(1)9m24n2=;(2)16x2y2=;(3)x29=;(4)14x2=。活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子
4、与第二组式子之间的对应关系。第二环节 想一想 活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2b2=(a+b)(ab)活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征。注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成 第三环节 做一做 活动内容:把下列各式因式分解:(1)2516x2 (2)9a2241b 活动目的:培养学生对平方差公式的应用能力。注意事项:学生对含有分数的平方差公式应用起来有一定的困难,有的
5、学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误。1 3 第四环节 议一议 活动内容:将下列各式因式分解:(1)9(xy)2(x+y)2 (2)2x38x 活动目的:(1)让学生理解在平方差公式a2b2=(a+b)(ab)中的a与b不仅可以表示单项式,也可以表示多项式,向学生渗透换元的思想方法;(2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。注意事项:在教师的引导下,学生能逐步理解平方差公式中的a与b不仅可以表示单项式,也可以表示多项式。第五环节 反馈练习 活动内容:1判断正误:(1)x2+y2=(x+y)(xy)()(2)
6、x2+y2=(x+y)(xy)()(3)x2y2=(x+y)(xy)()(4)x2y2=(x+y)(xy)()2把下列各式因式分解:(1)4m2 (2)9m24n2 (3)a2b2m2 (4)(ma)2(nb)2 (5)16x481y4 (6)3x3y12xy 3如图,在一块边长为a的正方形纸片的四角,各剪去一个边长为b的正方形。用a 与b表示剩余部分的面积,并求当a=36,b=0.8 时的面积。活动目的:通过学生的反馈练习,使教师能全面了解学生对平方差公式的特征是否清楚,对平方差公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏。注意事项:在实际应用中,部分
7、学生对于第 3 题因式分解的实际应用不能理解,他们没有采用因式分解的方法,而是利用计算器硬生生地计算出来。ab1 4 第六环节 学生反思 活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?活动目的:通过学生的回顾与反思,强化学生对整式乘法的平方差公式的与因式分解的平方差公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解。注意事项:学生认识到了以下事实:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;【教学反思】逆向思维是一种启发智力的方式,它有悖于人们通常的习惯,而正是这一特点,使得许多靠正向思维不能或是难于解决的问题迎刃而解。一些正向思维虽能解决的问题,在它的参与下,过程可以大大简化,效率可以成倍提高。正思与反思就象分析的一对翅膀,不可或缺。传统的课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。因此,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质。