高中数学三角函数知识点.docx

上传人:l*** 文档编号:8026067 上传时间:2022-03-11 格式:DOCX 页数:12 大小:31.97KB
返回 下载 相关 举报
高中数学三角函数知识点.docx_第1页
第1页 / 共12页
高中数学三角函数知识点.docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《高中数学三角函数知识点.docx》由会员分享,可在线阅读,更多相关《高中数学三角函数知识点.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学三角函数知识点 三角函数是一类基本的、重要的函数,在数学、其他学科以及生产实践中都有广泛的应用,下面是我整理的中学数学三角函数学问点,欢迎大家阅读共享借鉴。 更多函数相关内容举荐 中学数学重点公式总结共享 初中数学函数学问点 高二数学必背公式归纳 中考数学一次函数学问点 函数的概念教学反思 中学数学三角函数学问点 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边

2、;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90-)=cos,cos(90-)=sin, tan(90-)=cot,cot(90-)=tan. 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() 积的关系: sin=tan?cos cos=cot?sin tan=sin?sec cot=cos?csc sec=tan?csc csc=sec?cot 倒数关系: tan?cot=1 sin

3、?csc=1 cos?sec=1 两角和与差的三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 三角和的三角函数: sin(+)=sin?cos?c

4、os+cos?sin?cos+cos?cos?sin-sin?sin?sin cos(+)=cos?cos?cos-cos?sin?sin-sin?cos?sin-sin?sin?cos tan(+)=(tan+tan+tan-tan?tan?tan)/(1-tan?tan-tan?tan-tan?tan) 协助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B 倍角公式: sin(2)=2sin

5、?cos=2/(tan+cot) cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() 三倍角公式: sin(3)=3sin-4sin3() cos(3)=4cos3()-3cos 半角公式: sin(/2)=(1-cos)/2) cos(/2)=(1+cos)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin 降幂公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2

6、)/(1+cos(2) 万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) 积化和差公式: sin?cos=(1/2)sin(+)+sin(-) cos?sin=(1/2)sin(+)-sin(-) cos?cos=(1/2)cos(+)+cos(-) sin?sin=-(1/2)cos(+)-cos(-) 和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-c

7、os=-2sin(+)/2sin(-)/2 推导公式: tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos/2)2 其他: sin+sin(+2/n)+sin(+2x2/n)+sin(+2x3/n)+sin+2x(n-1)/n=0 cos+cos(+2/n)+cos(+2x2/n)+cos(+2x3/n)+cos+2x(n-1)/n=0以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 函数名正弦余弦正切余

8、切正割余割 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有 正弦函数sin=y/r 余弦函数cos=x/r 正切函数tan=y/x 余切函数cot=x/y 正割函数sec=r/x 余割函数csc=r/y 正弦(sin):角的对边比上斜边 余弦(cos):角的邻边比上斜边 正切(tan):角的对边比上邻边 余切(cot):角的邻边比上对边 正割(sec):角的斜边比上邻边 余割(csc):角的斜边比上对边 万能公式 (1)(sin)2+(cos)2=1 (2)1+(tan)2=(sec)2 (3)1+(cot)2=(csc)2 证明下面两式,只

9、需将一式,左右同除(sin)2,其次个除(cos)2即可 (4)对于随意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=-C tan(A+B)=tan(-C) (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=n(nZ)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/

10、2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 万能公式为: 设tan(A/2)=t sinA=2t/(1+t2)(A2k+,kZ) tanA=2t/(1-t2)(A2k+,kZ) cosA=(1-t2)/(1+t2)(A2k+,且Ak+(/2)kZ) 就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很

11、好求了. 三角函数关系 倒数关系 tan?cot=1 sin?csc=1 cos?sec=1 商的关系 sin/cos=tan=sec/csc cos/sin=cot=cscc 平方关系 sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形随意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式

12、。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(+)=sincos+cossin sin(-)=sincos-cossin cos(+)=coscos-sinsin cos(-)=coscos+sinsin tan(+)=(tan+tan)/(1-tan?tan) tan(-)=(tan-tan)/(1+tan?tan) 二倍角的正弦、余弦和正切公式 sin2=2sincos cos2=cos2()-sin2()=2cos2()-1=1-2sin2() tan2=2tan/(1-tan2() 中学数学三角函数学问点本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁