2022年两角差的余弦公式教案.docx

上传人:H****o 文档编号:79934391 上传时间:2023-03-22 格式:DOCX 页数:10 大小:119.26KB
返回 下载 相关 举报
2022年两角差的余弦公式教案.docx_第1页
第1页 / 共10页
2022年两角差的余弦公式教案.docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2022年两角差的余弦公式教案.docx》由会员分享,可在线阅读,更多相关《2022年两角差的余弦公式教案.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -3.1.1 两角差的余弦公式一、教材分析两角差的余弦公式是人教 A 版高中数学必修4 第三章 三角恒等变换第一节两角和与差的正弦、余弦和正切公式第一节课的内容.本节主要给出了两角差的余弦公式的 推导,要引导同学主动参加,独立思索,自己得出相应的结论.二、教学目标1.引导同学建立两角差的余弦公式.通过公式的简洁应用,使同学初步懂得公式的结构及其功能,并为建立其他和差公式打好基础.2.通过课题背景的设计,增强同学的应用意识,激发同学的学习积极性.3.在探究公式的过程中,逐步培育同学学会分析问题、解决问题的才能

2、,培育同学学会合作沟通的才能.三、教学重点难点重点两角差余弦公式的探究和简洁应用.难点探究过程的组织和引导.四、学情分析之前学习了三角函数的性质,以及平面对量的运算和应用,在此基础上, 要考虑如何利用任意角,的正弦余弦值来表示cos ,坚固的把握这个公式,并会敏捷运用公 式进行下一节内容的学习.五、教学方法1. 自主性学习法:通过自学把握两角差的余弦公式.2. 探究式学习法:通过分析、探究、把握两角差的余弦公式的过程.3. 反馈练习法:以练习来检验学问的应用情形,找出未把握的内容及其存在的差距六、课前预备1.同学预备:预习两角差的余弦公式,懂得两种方法的推理过程.2.老师预备:课前预习学案,课

3、内探究学案,课后延长拓展学案.七、课时支配:1 课时八、教学过程(一)创设情形,揭示课题可编辑资料 - - - 欢迎下载精品_精品资料_以学校教学楼为背景素材(见课件) 引入问题. 并针对问题中的cos150 用运算器或不可编辑资料 - - - 欢迎下载精品_精品资料_用运算器运算求值,以激趣激疑,导入课题.老师问: 想一想 : 学校因某次活动的需要 ,需从楼顶的 C 点处往该点正对的的面上的 A 点处拉一条钢绳 ,为了在购买钢绳时不至于铺张 ,你能算一算究竟需要多长钢绳吗 . 要求在的面上测量 ,测量工具 :皮尺 ,测角器 可编辑资料 - - - 欢迎下载精品_精品资料_问题:( 1)能不能

4、不用运算器求值:cos 450, cos30 0, cos150可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_( 2) cos450300 cos 450cos30 0是否成立?可编辑资料 - - - 欢迎下载精品_精品资料_设计意图: 由给出的背景素材,使同学感受数学源于生活,又应用于生活,唤起同学解决问题的爱好, 和抛出新学问引起同学的疑问,在爱好和疑问中,激发同学的求知欲,引导学习方向.(二)、研探新知可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 1 页,共 5 页 - -

5、- - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -1. 三角函数线法:问: 怎样作出角、的终边.怎样作出角的余弦线OM怎样利用几何直观查找OM 的表示式.设计意图: 尽量用动画课件把探究过程展现出来,使同学能从几何直观角度加强对公式结构形式的熟悉.Yp1ACP - XOBM可编辑资料 - - - 欢迎下载精品_精品资料_(1) ) 设角终边与单位圆的交点为P1 ,POP1,就POx.可编辑资料 - - - 欢迎下载精品_精品资料_(2) ) 过点 P 作 P M X 轴于点 M,那么 OM就是

6、的余弦线.(3) ) 过点 P 作 P A OP1 于 A,过点 A 作 AB x 轴于 B,过点 P 作 PC AB于 C那么OA 表示cos, AP 表示 sin,并且PACP1Ox.于是OM=OB+BM=OB+CP=OAcos+APsin= coscossinsin最终要提示同学留意,公式推导的前提条件:、都是锐角,且2. 向量法:问:结合图形,明确应选哪几个向量,它们怎么表示?怎样利用向量数量积的概念和运算公式得到结果.对探究的过程进一步严谨性的摸索和处理,从而得到合理的科学结论.设计意图: 让同学经受利用向量学问解决一个数学问题的过程,体会向量方法解决数学问题的简洁性.如图 ,建立单

7、位圆 Ouuuvuuuv可编辑资料 - - - 欢迎下载精品_精品资料_就OAcos,sin, OBcos,sin由向量数量积的概念,有可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 2 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -yABOx由向量数量积的坐标表示, 有uuur由于、都是任意 角 , 所以也是任意角 , 但由诱导公式以总可找到一个0, 2

8、,使得coscos .于是对于任意角简记例 1.利用差角余弦公式求0cos15(求解过程让同学独立完成,留意引导同学多方向、多维度摸索问题)解法 1:ucos150cos45300cos450 sin 30解法 2:可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 3 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_cos150cos600450 cos60 0

9、 cos450sin 600 sin 450=264可编辑资料 - - - 欢迎下载精品_精品资料_变式训练:利用两角差的余弦公式证明以下诱导公式:可编辑资料 - - - 欢迎下载精品_精品资料_( 1) cos2sin.( 2) cos2cos可编辑资料 - - - 欢迎下载精品_精品资料_例2.已知sin= 4 ,( ,), cos= -5, 第三象限角,求 cos()的值5213(让同学联系公式C和此题的条件, 考虑清晰要运算cos,应作那些预备. )可编辑资料 - - - 欢迎下载精品_精品资料_解:由sin4 ,52,得 cos1sin 2214355可编辑资料 - - - 欢迎下载

10、精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_又由 cos5,是第三象限角,得13sin1cos2215121313可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_所以 coscoscossinsin3 541233可编辑资料 - - - 欢迎下载精品_精品资料_51351365让同学结合公式coscoscossinsin,明确需要再求哪些三角函数值,可使问题得到解决.可编辑资料 - - - 欢迎下载精品_精品资料_变式训练:已知 sin15,是其次象限角,求cos()的值可编辑资料 - - - 欢迎下载精品_精品资料_173(

11、三)、质疑答辩,排难解惑,进展思维可编辑资料 - - - 欢迎下载精品_精品资料_1. 利用两角和(差)的余弦公式,求cos 750 ,cos1050可编辑资料 - - - 欢迎下载精品_精品资料_【点评】 :把一个详细角构造成两个角的和、差形式,有许多种构造方法,例如:可编辑资料 - - - 欢迎下载精品_精品资料_cos1050cos1500450 ,要学会敏捷运用.可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_2.求值cos75 0cos30 0sin 75 0sin 3002 2可编辑资料 - - - 欢迎下载精品_精品资料_3化简 c

12、oscossinsincos可编辑资料 - - - 欢迎下载精品_精品资料_4.已知,为锐角,cos15,sin()7143,求 cos( 1 ) 2可编辑资料 - - - 欢迎下载精品_精品资料_提示:利用拆角思想coscos 的变换技巧(设计意图:通过变式训练,进一步加深同学对公式的懂得和应用,体验公式既可正用、逆用,仍可变用 . 仍可使同学把握“变角”和“拆角”的思想方法解决问题,培育了同学的敏捷思维品质,提高同学的数学沟通才能,促进思维的创新 .)(四)发导学案、布置预习可编辑资料 - - - 欢迎下载精品_精品资料_本节我们学习了两角和与差的余弦公式,要求同学们把握公式C 的推导,

13、能娴熟运可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_用公式C ,留意公式C 的逆用.在解题过程中留意角、的象限,也就是符号可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 4 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_问题,学会敏捷运用.课下完成本节的课后练

14、习以及课后延展作业,课本P137 习题 2.3.4可编辑资料 - - - 欢迎下载精品_精品资料_设计意图:布置下节课的预习作业,并对本节课巩固提高.老师课后准时批阅本节的延长拓展训练 .九、板书设计两角差的余弦公式1. 三角函数线法2.向量法例 1变式训练例 2变式训练当堂训练 1.2.3.十、教学反思4.本节主要考察如何用任意角,的正弦 余弦值来表示cos ,回忆公式C() 的推导过程,观看公式的特点,留意符号区分以及公式中角,的任意性,特别要留意公式既可正用、逆用,仍可变用 即要活用 . 仍要留意把握“变角”和“拆角”的思想方法解决问题.设计意图: 让同学通过自己小结,反思学习过程, 加深对公式及其推导过程(包括发觉、猜想、论证的数学化的过程)的懂得.可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 5 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁