《《反比例函数的意义》参考教案.doc》由会员分享,可在线阅读,更多相关《《反比例函数的意义》参考教案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1711反比例函数的意义一、知识与技能1从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣2、通过分组讨论,培养学生合作交流意识和探索精神教学重点:理解和领会反比例函数的概念教学难点:领悟反比例的概念教学过程:一、创设情境,导入新课活动1
2、问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式教师组织学生讨论,提问学生,师生互动在此活动
3、中老师应重点关注学生:能否积极主动地合作交流能否用语言说明两个变量间的关系能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的
4、变化而变化师生行为学生先独立思考,在进行全班交流教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零活动3做一做:一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流教师提出问题,关注学生思考此活动中教师应
5、重点关注:生能否理解反比例函数的意义,理解反比例函数的概念;学生能否顺利抽象反比例函数的模型;学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?, , 问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值师生行为:学生独立思考,然后小组合作交流教师巡视,查看学生完成的情况,并给予及时引导在此活动中教师应重点关注:学生能否领会反比例函数的意义,理解反比例函数的概念;学生能否积极主动地参与小组活动分析及解答:1、只有xy=123是反比例函数2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常
6、数k的值解:(1)设,因为x=2时,y=6,所以有解得k=12因此(2)把x=4代入,得三、巩固提高活动51、已知y是x的反比例函数,并且当x=3时,y=8(1)写出y与x之间的函数关系式(2)求y=2时x的值2、y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象 5 / 5