《常微分方程》试题.doc

上传人:飞****2 文档编号:78749744 上传时间:2023-03-19 格式:DOC 页数:5 大小:244KB
返回 下载 相关 举报
《常微分方程》试题.doc_第1页
第1页 / 共5页
《常微分方程》试题.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《《常微分方程》试题.doc》由会员分享,可在线阅读,更多相关《《常微分方程》试题.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、常微分方程试卷1一、填空题(每题3分,共15分) 1一阶微分方程的通解的图像是 维空间上的一族曲线 2二阶线性齐次微分方程的两个解为方程的基本解组充分必要条件是 3方程的基本解组是 4一个不可延展解的存在在区间一定是 区间 5方程的常数解是 二、单项选择题(每题3分,共15分) 6方程满足初值问题解存在且唯一定理条件的区域是( )(A)上半平面 (B)xoy平面 (C)下半平面 (D)除y轴外的全平面 7. 方程( )奇解(A)有一个 (B)有两个 (C)无 (D)有无数个 8连续可微是保证方程解存在且唯一的( )条件 (A)必要 (B)充分 (C)充分必要 (D)必要非充分 9二阶线性非齐次

2、微分方程的所有解( ) (A)构成一个2维线性空间 (B)构成一个3维线性空间 (C)不能构成一个线性空间 (D)构成一个无限维线性空间 10方程过点(0, 0)有( )(A) 无数个解 (B) 只有一个解 (C) 只有两个解(D) 只有三个解三、计算题(每题分,共30分) 求下列方程的通解或通积分: 11. 12. 13. 14 15四、计算题(每题10分,共20分) 16求方程的通解 17求下列方程组的通解 五、证明题(每题10分,共20分) 18设在上连续,且,求证:方程的一切解,均有19在方程中,在上连续,求证:若恒不为零,则该方程的任一基本解组的朗斯基行列式是上的严格单调函数常微分方

3、程试卷1答案及评分标准 一、填空题(每题3分,共15分) 12 2线性无关(或:它们的朗斯基行列式不等于零)3 4开5 二、单项选择题(每题3分,共15分)6D 7C 8B 9C 10A三、计算题(每题分,共30分) 11解 当,时,分离变量取不定积分,得 (3分) 通积分为 (6分) 12解 令,则,代入原方程,得 (3分) 分离变量,取不定积分,得 () 通积分为: (6分) 13解 方程两端同乘以,得 令 ,则,代入上式,得 (3分) 通解为 原方程通解为 (6分) 14解 因为,所以原方程是全微分方程 (2分) 取,原方程的通积分为 (4分)即 (6分) 15解 原方程是克莱洛方程,通

4、解为 (6分)四、计算题(每题10分,共20分) 16解 对应齐次方程的特征方程为,特征根为, 齐次方程的通解为 (4分) 因为是特征根。所以,设非齐次方程的特解为 (6分) 代入原方程,比较系数确定出 , 原方程的通解为 (10分) 17解 先解出齐次方程的通解 (4分) 令非齐次方程特解为 满足 (6分)解得 积分,得 ,通解为 (10分)五、证明题(每题10分,共20分) 18证明 设是方程任一解,满足,该解的表达式为 (4分) 取极限 = (10分) 19证明 设,是方程的基本解组,则对任意,它们朗斯基行列式在上有定义,且又由刘维尔公式 , (5分) 由于,于是对一切,有 或 故 是上的严格单调函数 (10分)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁