五章模型的建立与估计中的问题及对策.ppt

上传人:豆**** 文档编号:77594301 上传时间:2023-03-15 格式:PPT 页数:85 大小:633.50KB
返回 下载 相关 举报
五章模型的建立与估计中的问题及对策.ppt_第1页
第1页 / 共85页
五章模型的建立与估计中的问题及对策.ppt_第2页
第2页 / 共85页
点击查看更多>>
资源描述

《五章模型的建立与估计中的问题及对策.ppt》由会员分享,可在线阅读,更多相关《五章模型的建立与估计中的问题及对策.ppt(85页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1五章模型的建立与估计中的问题及对策 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望2 我们已学到了许多有用的计量经济分析方法,如建立模型、估计参数、假设检验、预测、非线性模型的线性化,用虚拟变量将定性因素引入模型等。可是,我们所使用的最小二乘法,以及由此而得到的OLS估计量令人满意的性质,是根据一组假设条件而得到的。在实践中,如果某些假设条件不能满足,则OLS就不再适用于模型的估计。在这种情况下,分析方法就需要改变。下面列出实践中可能碰到的一些常见问题:l误设定

2、(Misspecification 或specification error)l多重共线性(Multicollinearity)l异方差性(Heteroscedasticity)l自相关(Autocorrelation)本章将对上述问题作简要讨论,主要介绍问题的后果、检测方法和解决途径。3第一节 误设定采用OLS法估计模型时,实际上有一个隐含的假设,即模型是正确设定的。这包括两方面的含义:函数形式正确和解释变量选择正确。在实践中,这样一个假设或许从来也不现实。我们可能犯下列三个方面的错误:l 选择错误的函数形式l遗漏有关的解释变量l包括无关的解释变量从而造成所谓的“误设定”问题。4一.选择错误

3、的函数形式 这类错误中比较常见的是将非线性关系作为线性关系处理。函数形式选择错误,所建立的模型当然无法反映所研究现象的实际情况,后果是显而易见的。因此,我们应当根据实际问题,选择正确的函数形式。我们在前面各章的介绍中采用的函数形式以线性函数为主,上一章介绍了应变量和解释变量都采用对数的双对数模型,下面再介绍几种比较常见的函数形式的模型,为读者的回归实践多提供几种选择方案。这几种模型是:半对数模型 双曲函数模型 多项式回归模型51.半对数模型半对数模型 半对数模型指的是应变量和解释变量中一个为对数形式而另一个为线性的模型。应变量为对数形式的称为对对数数-线线性性模模型型(log-lin mode

4、l)。解释变量为对数形式的称为线线性性-对对数数模型模型(lin-log model)。我们先介绍前者,其形式如下:对数-线性模型中,斜率的含义是Y的百分比变动,即解释变量X变动一个单位引起的应变量Y的百分比变动。这是因为,利用微分可以得出:6 这表明,斜率度量的是解释变量X的单位变动所引起的应变量Y的相对变动。将此相对变动乘以100,就得到Y的百分比变动,或者说得到Y的增长率。由于对数-线性模型中斜率系数的这一含义,因而也叫增增长长模模型型(growth model)。增长模型通常用于测度所关心的经济变量(如GDP)的增长率。例如,我们可以通过估计下面的半对数模型 得到一国GDP的年增长率的

5、估计值,这里t为时间趋势变量。7线性-对数模型的形式如下:与前面类似,我们可用微分得到 因此 这表明 上式表明,Y的绝对变动量等于 乘以X的相对变动量。因此,线性-对数模型通常用于研究解释变量每变动1%引起的因变量的绝对变动量是多少这类问题。82.双曲函数模型双曲函数模型 双曲函数模型的形式为:不难看出,这是一个仅存在变量非线性的模型,很容易用重新定义的方法将其线性化。双曲函数模型的特点是,当X趋向无穷时,Y趋向 ,反映到图上,就是当X趋向无穷时,Y将无限靠近其渐近线(Y=)。双曲函数模型通常用于描述著名的恩格尔曲线和菲利普斯曲线。93.多项式回归模型多项式回归模型 多项式回归模型通常用于描述

6、生产成本函数,其一般形式为:其中Y表示总成本,X表示产出,P为多项式的阶数,一般不超过四阶。多项式回归模型中,解释变量X以不同幂次出现在方程的右端。这类模型也仅存在变量非线性,因而很容易线性化,可用OLS法估计模型。10二.遗漏有关的解释变量 模型中遗漏了对因变量有显著影响的解释变量的后果是:将使模型参数估计量不再是无偏估计量。三.包括无关的解释变量 模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。注 有关上述两点结论的说明请参见教科书P101-102。11四.解决解释变量误设定问题的原则 在模型设定中的一般原则是尽量不漏掉有关的解释变量。因为估计量有偏比增大误差

7、更严重。但如果方差很大,得到的无偏估计量也就没有多大意义了,因此也不宜随意乱增加解释变量。在回归实践中,有时要对某个变量是否应该作为解释变量包括在方程中作出准确的判断确实不是一件容易的事,因为目前还没有行之有效的方法可供使用。尽管如此,还是有一些有助于我们进行判断的准则可用,它们是:12选择解释变量的四条准则选择解释变量的四条准则 1.理论:从理论上看,该变量是否应该作为解释变量包括 在方程中?2.t检验:该变量的系数估计值是否显著?3.:该变量加进方程中后,是否增大?4.偏倚:该变量加进方程中后,其它变量的系数估计值是 否显著变化?如果对四个问题的回答都是肯定的,则该变量应该包括在方程中;如

8、果对四个问题的回答都是“否”,则该变量是无关变量,可以安全地从方程中删掉它。这是两种容易决策的情形。13 但根据以上准则判断并不总是这么简单。在很多情况下,这四项准则的判断结果会出现不一致。例如,有可能某个变量加进方程后,增大,但该变量不显著。在选择变量的问题上,应当坚定不移地根据理论而不是满意的拟合结果来作决定,对于是否将一个变量包括在回归方程中的问题,理论是最重要的判断准则。如果不这样做,产生不正确结果的风险很大。在这种情况下,作出正确判断不是一件容易的事,处理的原则是将理论准则放在第一位,再多的统计证据也不能将一个理论上很重要的变量变成“无关”变量。14五.检验误设定的RESET方法 上

9、面给出了选择解释变量的四条准则。可是,有时这些准则不能提供足够的信息使研究人员确信其设定是最恰当的,在这种情况下,可考虑使用一些更正规的检验方法来比较不同估计方程的性质。这类方法相当多,这里就不一一列出,仅介绍拉姆齐(J.B.Ramsey)的回归设定误差检验法(RESET法)。15 RESET检验法的思路 RESET检验法的思路是在要检验的回归方程中加进 等项作为解释变量,然后看结果是否有显著改善。如有,则可判断原方程存在遗漏有关变量的问题或其它的误设定问题。直观地看,这些添加的项是任何可能的遗漏变量或错误的函数形式的替身,如果这些替身能够通过F检验,表明它们改善了原方程的拟合状况,则我们有理

10、由说原方程存在误设定问题。等项形成多项式函数形式,多项式是一种强有力的曲线拟合装置,因而如果存在误设定,则用这样一个装置可以很好地代表它们。16RESET检验法的步骤 拉姆齐RESET检验的具体步骤是:(1)用OLS法估计要检验的方程,得到 (2)由上一步得到的值 (i=1,2,n),计算 ,然后用OLS法估计:(3)用F检验比较两个方程的拟合情况(类似于上一章中联合假设检验采用的方法),如果两方程总体拟合情况显著不同,则我们得出原方程可能存在误设定的结论。使用的检验统计量为:17其中:RSSM为第一步中回归(有约束回归)的残差平方和,RSS为第二步中回归(无约束回归)的残差平方和,M为约束条

11、件的个数,这里是M=3。应该指出的是,拉姆齐RESET检验仅能检验误设定的存在,而不能告诉我们到底是哪一类的误设定,或者说,不能告诉我们正确的模型是什么。但该方法毕竟能给出模型误设定的信号,以便我们去进一步查找问题。另一方面,如果模型设定正确,RESET检验使我们能够排除误设定的存在,转而去查找其它方面的问题。18第二节 多重共线性 应用OLS法的一个假设条件是;矩阵X的秩=K+110作为存在严重多重共线性的标准,特别在解释变量多的情形应当如此。需要指出的是,所有VIF值都低,并不能排除严重多重共线性的存在,这与使用相关系数矩阵检验的情况相似。26 四 解决多重共线性的方法 思路;加入额外信息

12、。具体方法有以下几种:增加数据 对模型施加某些约束条件 删除一个或几个共线变量 将模型适当变形1增加数据 多重共线性实质上是数据问题,因此,增加数据就有可能消除或减缓多重共线性,具体方法包括增加观测值、利用不同的数据集或采用新的样本。27例:需求函数Yt=1+2Xt+3Pt+ut 在时间序列数据中,收入(X)和价格(P)往往是高度相关的,用时间序列数据估计往往会产生多重共线性。然而,在横截面数据中,则不存在这个问题,因为某个特定时点P为常数。如果取一横截面样本(如从5000个家庭取得的数据),则可用来估计 Yi=1+2Xi+ui 然后将得到的估计值 作为一个约束条件(2=)施加于时间序列数据的

13、回归计算中,即估计 Yt-Xt =1+3Pt+ut,得到 ,。282对模型施加某些约束条件 在存在多重共线性的模型中,依据经济理论施加某些约束条件,将减小系数估计量的方差,如在CobbDouglas生产函数中加进规模效益不变的约束,可解决资本和劳动的高度相关而引起的多重共线性问题。3删除一个或几个共线变量 这样做,实际上就是利用给定数据估计较少的参数,从而降低对观测信息的需求,以解决多重共线性问题。删除哪些变量,可根据假设检验的结果确定。应注意的是,这种做法可能会使得到的系数估计量产生偏倚,因而需要权衡利弊。294将模型适当变形例1某商品的需求函数为:其中:Q=需求量,X=收入,P=该商品的价

14、格,P*=替代商品的价格 在实际数据中,P和P*往往呈同方向变动,它们之间高度相关,模型存在多重共线性。如果我们仅要求在知道两种商品的相对价格变动时,对需求量进行预测,则可将需求函数变为:就可以解决多重共线性问题。30例2有滞后变量的情形 Yt=1+2Xt+3 Xt-1+ut 一般而言,Xt和Xt 1往往高度相关,将模型变换为:Yt=1+2(Xt-Xt 1)+3Xt-1+ut 其中3=3+2 经验表明:Xt和Xt 1的相关程度要远远小于和Xt和Xt 1的相关程度,因而这种变换有可能消除或减缓多重共线性。315主成分法 可将共线变量组合在一起形成一个综合指数(变量),用它来代表这组变量。构造综合

15、指数的最常用方法是主成分法。主成分法的计算相当复杂,这里不做介绍。同学们需要了解的是,主成分的特点是,各主成分之间互不相关,并且,用很少几个主成分就可以解释全部X变量的绝大部分方差,因而在出现多重共线性时,可以用主成分替代原有解释变量进行回归计算,然后再将所得到的系数还原成原模型中的参数估计值。32五.处理多重共线性问题的原则1.多重共线性是普遍存在的,轻微的多重共线性问题可不 采取措施。3.如果模型仅用于预测,则只要拟合好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不 影响预测结果。2.严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数的符号,重要的解释

16、变量t 值很低。要根据不同情况采取必要措施。33第三节 异方差性 回顾我们应用OLS法所需假设条件,其中大部分是有关扰动项的统计假设,它们是:(1)E(ut)=0,t=1,2,n.扰动项均值为0(2)Cov(ui,uj)=E(uiuj)=0,ij.扰动项相互独立(3)Var(ut)=E(ut)=2,t=1,2,n.常数方差(4)ut N(0,2).正态性 对于(1),我们可论证其合理性。而第(4)条,也没有多大问题。大样本即可假定扰动项服从正态分布。而对于(2),(3)两条,则无法论证其合理性。实际问题中,这两条不成立的情况比比皆是。下面即将讨论它们不成立的情况,即异方差性和自相关的情形。34

17、一 异方差性及其后果1定义 若Var(ut)=常数的假设不成立,即 Var(ut)=常数,则称扰动项具有异方差性。2 什么情况下可能发生异方差性问题?解释变量取值变动幅度大时,常数方差的假设往往难以成立。异方差性主要发生在横截面数据的情况,时间序列问题中一般不会发生,除非时间跨度过大。35例:Yi=+Xi+ui 其中:Y=指定规模和组成的家庭每月消费支出 X=这样的家庭的每月可支配收入 设X的N个观测值取自一个家庭可支配收入的横截面样本。某些家庭接近于勉强维持生存的水平,另一些家庭则有很高的收入。不难设想,低收入家庭的消费支出不大可能离开他们的均值E(Y)过远,太高无法支持,太低则消费将处于维

18、持生存的水平之下。因此,低收入家庭消费支出额的波动应当较小,因而扰动项具有较小的方差。而高收入家庭则没有这种限制,其扰动项可能有大得多的方差。这就意味着异方差性。36 3异方差性的后果(1)参数估计量不再具有最小方差的性质 异方差性不破坏OLS估计量的无偏性,但不再是有效的。事实上,异方差性的存在导致OLS估计量既不是有效的,也不具有渐近有效性。(2)系数的显著性检验失去意义 更为严重的是,在异方差性的情况下,矩阵主对角元素不再是OLS估计量方差的无偏估计量,从而导致系数的置信区间和假设检验结果不可信赖。例如在双变量模型中,如果 倾向于低估 的真实方差,则置信区间可能要比实际的窄,给我们一个错

19、误信息,好象得到 的点预测值很精确。37二 异方差性的检验 异方差性后果的严重性意味着我们在实践中必须了解是否存在异方差性。常用的检验方法有:斯皮尔曼等级相关检验法(Spearman Rank Relation test)戈德弗尔德匡特检验法(Goldfeld Quandt test)格里瑟检验法(Glesjer test)帕克检验法(Park test)怀特检验法 (Whites General Heteroscedasticity test)381斯皮尔曼等级相关检验法 思路:将异方差性与扰动项u和某个解释变量X之间的相关程度挂钩(即 与 Xt 的大小有关),从而将对异方差性的研究转化为对

20、ut与Xt的相关程度的研究。由于扰动项无法观测,因而用残差代替之,转化为对et与Xt的相关程度的研究,若et与Xt高度相关,则可推断异方差性存在。在此无法用相关系数来检验,因为et与Xt的相关系数恒等于0:因而改用Xt和et的等级相关系数检验et和Xt的相关程度。39等级相关系数的计算步骤(1)将两变量的相应观测值分别按升序(或降序)排序,所得到的序号即为等级。(2)计算两变量各观测值相应的等级之差dt.(3)计算等级相关系数 40例:等级相关系数的计算 假设我们有Xt和et如下:Xt 25,40,52,58,65 et 1.6,-2.9,-10.7,14.8,5.7我们有 et 1.6,2.

21、9,10.7,14.8,5.7 Xt的等级 et的等级 dt 1 1 0 2 2 0 3 4 -1 4 5 -1 5 3 2 r=1 (6*6)/(5*24)=1-0.3=0.7 计算出等级相关系数后,就可判断异方差性是否存在。若相关系数绝对值高,则存在异方差性。对于多个解释变量的情况,可分别计算et与各解释变量的等级相关系数进行检验。412.戈德弗尔德匡特检验法基本思路:假定 随Yt的数值大小变动。检验步骤:(1)将数据分为三组:小Yt值组,中Yt值组,大Yt值组 (数据项大致相等)(2)对小Yt值组估计模型,给出 (3)对大Yt值组估计模型,给出 42 (4)H0:H1:(或 )检验统计量

22、为F0 =F(n3-k-1,n1-k-1)若F0Fc,则拒绝H0,存在异方差性。例:S=+Y+u 其中:S=储蓄 Y=收入 设 195160年,=0.01625 197079年,=0.9725 F0=0.9725/0.01625=59.9 查表得:d.f.为(8,8)时,5%Fc=3.44 F0Fc 因而拒绝H0。结论:存在异方差性。43三 广义最小二乘法1消除异方差性的思路 基本思路:变换原模型,使经过变换后的模型具有同方差性,然后再用OLS法进行估计。对于模型 Yt=0+1X1t+k Xkt+ut (1)若扰动项满足 E(ut)=0,E(uiuj)=0,ij,但 E(ut2)=常数.也就是

23、说,该模型只有同方差性这一条件不满足,则只要能将具有异方差性的扰动项的方差表示成如下形式:Var(ut)=,t=1,2,n其中 为一未知常数,表示一组已知数值,则用t去除模型各项,得变换模型:44 (2)由于所以变换后的扰动项的方差为常数,可以应用OLS法进行估计,得到的参数估计量为BLUE。但这里得到的OLS估计量是变模后模型(2)的OLS估计量。对于原模型而言,它已不是OLS估计量,称称为为广广义义最最小小二二乘乘估估计计量量(GLS估估计量)。计量)。452 广义最小二乘法(Generalized least squares)下面用矩阵形式的模型来推导出GLS估计量的一般计算公式。设GL

24、S模型为 Y=X+u (1)满足 E(u)=0,E(uu)=2,X 非随机,X的秩=K+1n,其中为正定矩阵。(注:正定矩阵是和单位矩阵合同的矩阵;正定矩阵所有顺序主子式均大于0。)46 根据矩阵代数知识可知,对于任一正定矩阵,存在着一个满秩(非退化,非奇异)矩阵P,使得 用P-1左乘原模型(1)(对原模型进行变换):令 Y*=P-1Y,X*=P-1X,u*=P-1u,得到 Y*=X*+u*(2)下面的问题是,模型(2)的扰动项u*是否 满足OLS法的基本假设条件。47我们有48这表明,模型(2)中的扰动项u*满足OLS法的基本假设,可直接用OLS估计,估计量向量 这就是 的广义最小二乘估计量

25、(GLS估计量)的公式,该估计量是BLUE。从上述证明过程可知,我们可将GLS法应用于为任意正定矩阵的情形。49如果只存在异方差性,则其中我们显然有5051四 广义最小二乘法的应用1根据实际问题确定矩阵 应用GLS法的关键是确定矩阵。对于仅存在异方差性的实际问题,矩阵是一个对角矩阵,即 现在的问题是,的值为已知这一假设是否现实,也就是我们能否根据实际问题,提出有关扰动项方差的某种合理的设想(即估计矩阵),使得 (为未知常数,为已知数值)下面通过例子说明这一问题。52例1 Yt=1+2Xt+ut t=1,2,n.其中 Y=家庭消费支出 X=家庭可支配收入 我们在前面已分析过,高收入家庭有较大的扰

26、动项方差,因此不妨假定扰动项方差与可支配收入成正比,即 Var(ut)=Xt ,t=1,2,n.式中是一未知常数,由于Xt为已知,相当于 ,而相当于 ,因此 应用GLS法,即可得出的GLS估计量。532格里瑟检验法(Glesjer test)在上例中我们假设扰动项方差与解释变量的取值成正比,这种假设是否真正合理呢?根据经验和分析做出的这种假设,虽然有一定道理,但未免显得过于武断,这方面还可做一些比较细致的工作。Glesjer检验法不仅可检验异方差性的存在,还可用于提供有关异方差形式的进一步信息,对于确定矩阵很有用,下面我们扼要说明格里瑟检验法的步骤。格里瑟检验法的思路是假定扰动项方差与解释变量

27、之间存在幂次关系,方法是用 对被认为与扰动项方差有关的解释变量回归,确定 和该解释变量的关系。由于与该解释变量之间关系的实际形式是未知的,因此需要用该解释变量的不同幂次进行试验,选择出最佳拟合形式。54具体步骤如下:(1)因变量Y对所有解释变量回归,计算残差et (t=1,2,n)(2)对所选择解释变量的各种形式回归,如 然后利用决定系数,选择拟合最佳的函数形式。(3)对1进行显著性检验,若显著异于0,则表明存在异方差性,否则再试其它形式。55 格里瑟检验法的最大优点是能够提供有关异方差性形式的信息,为GLS法提供矩阵。缺点是太繁琐。因此建议用其它方法检验异方差性的存在,然后再用格里瑟法确定异

28、方差性的具体形式,进而应用GLS法。例2 Yt=1+2X1t+k Xkt+ut 假设我们根据经验知道扰动项方差与Xjt有关,并用格里瑟法试验,得出:则 563加权最小二乘法加权最小二乘法 对于仅存在异方差性的问题,其矩阵是一个对角矩阵,即 在这种情况下应用广义最小二乘法,也就是在原模型两端左乘矩阵变换原模型,再对变换后的模型应用普通最小二乘法进行估计。57这种作法实际上等价于在代数形式的原模型 Yt=0+1X1 t+k X k t+u t 的两端除以 t,得变换模型:这种作法相当于在回归中给应变量和解释变量的每个观测值都赋予一个与相应扰动项的方差相联系的权数,然后再对这些变换后的数据进行OLS

29、回归,因为这种作法相当于每个观测值都以相应扰动项的标准差的估计值 的倒数(即 )为权数,因而被称为加权最小二乘法(WLS法,Weighted Least Squares)。58 加权最小二乘法是广义最小二乘法的一个特例,在矩阵为对角矩阵这种特殊情形下,我们既可以直接应用矩阵形式的广义最小二乘估计量公式得到GLS估计值,亦可避开矩阵运算,采用加权最小二乘法得到其WLS估计值,两者结果完全相同,无论你称之为GLS估计值还是WLS估计值,二者是一码事。例例:(1 1)其中:Y=R&D支出,X=销售额 采用美国1988年18个行业的数据估计上述方程,结果如下(括号中数字为t值):这里是横截面数据,由于

30、行业之间的差别,可能存在异方差性。59应用格里瑟法试验,得到异方差性形式为:将原模型(1)的两端除以 ,得 用OLS法估计(2)式,结果如下(括号中数字为t值):与(1)式的结果比较,两个方程斜率系数的估计值相差不大,但采用WLS法估计的比直接用OLS法估计的系数更为显著,这表明OLS法高估了X系数的标准差。60第四节第四节 自相关自相关一 定义若Cov(ui,uj)=E(uiuj)=0,ij不成立,即线性回归模型扰动项的方差协方差矩阵的非主对角线元素不全为0,则称为扰动项自相关,或序列相关(Serial Correlation)。二 自相关的原因及后果1原因自相关主要发生在时间序列数据的情形

31、,因而亦称为序列相关,主要有以下两种原因:(1)冲击的延期影响(惯性)在时间序列数据的情况下,随机冲击(扰动)的影响往往持续不止一个时期。例如,地震、洪水、罢工或战争等将在发生期的后续若干期中影响经济运行。61 微观经济中也与此类似,如一个工厂的产量,由于某种外部偶然因素的影响(如某种原材料的供应出了问题),该厂某周产量低于正常水平,那么,随后的一周或几周中,由于这种影响的存在或延续,产量也很可能低于正常水平(即扰动项为负)。不难看出,观测的周期越长,这种延期影响的严重性就越小,因此,年度数据比起季度数据来,序列相关成为一个问题可能性要小。(2)误设定 如果忽略了一个有关的解释变量,而该变量是

32、自相关的,则将使扰动项自相关,不正确的函数形式也将导致同样后果。在这些情况下,解决的方法是纠正误设定。本章后面将介绍的纠正自相关的方法都不适用于这种情况的自相关。622后果 自相关的后果与异方差性类似。(1)在扰动项自相关的情况下,尽管OLS估计量 仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(2)OLS估计量的标准误差不再是真实标准误差 的无偏估计量,使得在自相关的情况下,无法 再信赖回归参数的置信区间或假设检验的结果。63三 自相关的检验1检验一阶自相关的德宾沃森检验法(DurbinWatson test)(1)一阶自相关 自相关的最简单模式为:ut =ut-1+t,t=1,

33、2,n.其中称为自相关系数(-11),这种扰动项的自相关称为一阶自相关,即扰动项仅与其前一期的值有关。我们有:0 正自相关 0 负自相关 =0 无自相关64 在一阶自相关模式中,假定t具有以下性质:E(t)=0,E(t)=2=常数,E(ij)=0,ij,t服从正态分布。在计量经济学中,具备上述性质的量称为白噪声(White noise),表示为 t=White noise 或 t=白噪声65(2)德宾沃森检验法(DurbinWatson d test)统计软件包和研究报告在提供回归结果时通常都给出DW(或d)统计量的值,该统计量是从OLS回归的残差中计算得来的,它被用于一阶自相关的检验,计算公

34、式为:DW和一阶自相关系数的估计值之间存在以下近似关系:DW 2-2 由于-1 1,因而0 DW 4。不难看出,直观判断准则是,当DW统计量接近2时,则无自相关,DW值离2越远,则自相关存在的可能性越大。66DW检验的缺陷 我们当然期望能够有一张能够给出相应的n、k和值下各种DW临界值的表(就象t检验,F检验一样),使得我们可以按常规假设检验那样根据临界值作出判断。这样的表是根据检验统计量在原假设成立的情况下的抽样分布编制的。不幸的是,DW统计量的分布依赖于解释变量的具体观测值(即依赖于X矩阵)。因此不象t、F检验那样,有一张能够给出DW临界值的表。为解决这一问题,德宾和沃森证明,DW统计量的

35、真实分布位于两个极限分布之间,这两个分布分别称为下分布和上分布,如下图所示:67概率密度 下分布 上分布 0 A B C D DW值 每个分布的95%临界水平用A,B,C,D表示。68 现假设DW统计量的值位于A的左边,则不管这种情况下的DW统计量服从何种分布(上,下或中间),无自相关的原假设将被拒绝。与此类似,若DW统计量的值位于D的右边,则亦可拒绝无自相关的原假设。若DW统计量的值位于B和C之间,则可接受原假设。而当DW统计量的值位于A和B之间或C和D之间时,则无法得出结论。上述分析可以概括为:DWD 存在自相关 BDWC 无自相关 ADWB或CDW2,则令DW=4-DW,按上述准则进行判

36、别。例:DW=3.5,则 DW=4-3.5=0.5 查表(n=30,k=2,=5%)得:dL=1.28。DW=0.5 1.28 结论:存在自相关。71 2其它检验自相关的方法 DW检验法只能检验一阶自相关,并且,如果方程中包括滞后因变量(如Yt-1,Yt-2等)时,用DW法检验容易产生偏差。因此,在碰到较复杂的情形,我们应采用一些其它检验自相关的方法。下面列出几种方法及其适用环境。检验方法 适用环境Durbin-Watson d检验法 一阶自相关,方程中无Y的滞后项Durbins h 检验法 一阶自相关,方程中有Yt-1Box-Pierce检验法 一般自相关(一阶、二阶、K阶)LM检验法 一般

37、自相关(一阶、二阶、K阶)72四 消除自相关的方法 1一阶自相关 如果实际问题的自相关模式为一阶自相关,则只要知道,就可以完全消除自相关,下面用双变量模型来说明,但同样的原理适用于多个解释变量的情形。设 Yt=+Xt+ut (1)ut=ut-1+t 其中t是白噪声,且0。(1)式两端取一期滞后,得 Yt-1=+Xt-1+ut-1 (2)(2)式两端乘以,得 Yt-1=+Xt-1+ut-1 (3)73(1)-(3),得:Yt-Yt-1=(1-)+(Xt-Xt-1)+(ut -ut-1)(4)(4)式中的扰动项为 ut-ut1=t,从而满足标准假设条件。令 Yt=Yt-Yt-1 Xt=Xt-Xt-

38、1 =(1-),有 Yt=+Xt+t (5)若为已知,我们就可用OLS法直接统计(5)式,否则需要先估计。在未知的情况下,通常用下列两种方法。74(1)科克伦奥克特法(CochraneOrcutt)科克伦奥克特法是一个迭代过程,步骤如下:估 计 原 模 型(1)式),计 算 OLS残 差 et(t=1,2,n)。et对et-1回归,即估计et=et-1+t,得到的估计值 用 产生 然后估计 Yt=+Xt+t ,得到和的估计值 和 。重新计算残差,返回第步。此过程不断修改 ,和 ,直至收敛。75(2)希尔德雷斯卢法(Hildrethlu)此方法实际上是一种格点搜索法(Grid search),即

39、在的预先指定范围(如-1至1)内指定格点之间距离(如0.01),然后用这样产生的全部值(-1.00,-0.99,1.00)产生 Yt=Yt-Yt1 Xt=Xt-Xt1估计 Yt=+Xt+t 产生最小标准误差的值即作为的估计值,用该值得到的 和 即为原模型的系数估计值。762一般自相关 对于一般自相关问题,我们可采用广义最小二乘法处理。自相关意味着扰动项u的方差协方差矩阵 E(u12)E(u1u2)E(u1un)E(uu)=E(u2u1)E(u22)E(u2un)E(unu1)E(unu2)E(un2)中某些E(uiuj)0,ij.即 E(uu)=2,其中为对称正定矩阵。因而可应用GLS法。此方

40、法可用于任何类型的自相关,步骤如下:77(1)规定自相关的形式 例:(2)用代数方法确定E(uu)矩阵的元素E(ut2),E(utut-1),E(utut-2),即用 1,2,2等未知值表示上述元素,于是得到了矩阵。(3)用OLS法得到原方程的最小二乘残差e1,e2,en,然后根据这些残差估计1,2,得到其估计值代入上一步得到的矩阵,从而给出全部元素为已知的 矩阵。(4)计算 78第五章 小结一、误设定 误设定包括函数形式的误设定和解释变量的误设定。我们重点介绍了两种类型的误设定。1、模型中忽略了有关的解释变量 其后果是使参数估计量产生偏倚,即OLS估计量不再是无偏估计量。2、模型中包括了无关

41、的解释变量 其后果是增大了估计量的方差,但估计量仍无偏。在实际工作中,我们可用拉姆齐RESET检验法检验模型是否误设定,但仍无法准确判断是何种类型的误设定。一般原则是尽量不漏掉与因变量有关的解释变量尤其是理论上重要的变量,判断一个变量是否应加进回归方程中,可依据本章介绍的四项准则。79二、多重共线性 当解释变量之间存在着高度相关时,就会发生多重共线性。多重共线性虽然不影响参数估计量的无偏性,但会造成参数估计量的高方差、精度差和低t值,犯第类错误的可能性增加.。多重共线性可通过回归结果进行判断,可以通过解释变量的相关系数矩阵检验,还可用条件指数检验。解决多重共线性问题主要从以下两个方向进行:1、

42、减少要估计的参数,即利用给定的数据估计较少的参数。2、改变数据,即增加信息。这是一个要在实践中反复摸索的问题。80三、异方差性 若 Var(ut)=2 =常数 的假设不成立,则称扰动项具有异方差性。异方差性主要发生在横截面数据或时间跨度很大的时间序列数据的情形。1、异方差性的后果 (1)虽然OLS估计量仍是无偏的,但不再具有最小方差的 性质,即不再是有效的。(2)系数的置信区间和显著性检验结果不可信赖。2、异方差性的检验 常用的检验方法有斯皮尔曼等级相关检验法、戈德弗尔德-夸特检验法和格里瑟检验法。建议采用前两种方法检验异方差性的存在,用格里瑟检验法确定异方差性的形式。81 3、广义最小二乘法

43、(GLS法)GLS模型 Y=X+满足E()=0,E()=2,X非随机 且Rank(X)=k+10,t=1,2,n 问题转化为如何确定 (t=1,2,n)的值,这需要根据具体问题而定。在没有明确线索时,通常采用格里瑟法通过实验确定之。82四、自相关 若cov(ui,uj)=E(ij)=0,ij 不成立,则我们说存在着扰动项的自相关,自相关也称为序列相关。当我们应用时间序列数据时,往往会碰到自相关的问题。此外,遗漏有关的解释变量也可能产生自相关的现象。自相关的后果与异方差性的后果类似。最常用的自相关检验法是德宾-沃森检验法。DW法适用于一阶自相关模式:ut=ut-1+t且方程中不包括因变量的滞后项

44、的情形。其它方法包括适用于方程中有Yt-1项的h检验法(检验一阶自相关),以及检验一般自相关的Box-Pierce法和LM法。83 一阶自相关的消除,通常采用科克伦-奥克特法或希尔德雷斯-卢法估计自相关系数,得到其估计值后,对原模型进行变换,以消除扰动项的自相关型,得到原模型参数的估计值。一般自相关的消除,可采用GLS法处理。84第五章 习题1、检验下列情况下是否存在扰动项的自相关。(1)DW=0.81,n=21,k=3 (2)DW=2.25,n=15,k=2 (3)DW=1.56,n=30,k=52、有人建立了一个回归模型来研究我国县一级的教育支出:Y=0+1X1+2X2+3X3+u 其中:

45、Y,X1,X2 和X3分别为所研究县份的教育支出、居民人均收入、学龄儿童人数和可以利用的各级政府教育拨款。他打算用遍布我国各省、市、自治区的100个县的数据来估计上述模型。(1)所用数据是什么类型的数据?(2)能否采用OLS法进行估计?为什么?(3)如不能采用OLS法,你认为应采用什么方法?853、试从下列回归结果分析存在问题及解决方法:(1)=24.7747 +0.9415 -0.0424 R=0.9635 (SE:)(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000附:5%显著性水平下,tc()=1.96 (2)=0.4529 -0.0041t R=0.5284 (t:)(-3.9606)DW=0.8252其中Y=劳动在增加值中 份额,t=时间该估计结果是使用1949-1964年度数据得到的。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁