初计量经济学之模型的建立与估计中的问题及对策.pptx

上传人:修**** 文档编号:12718705 上传时间:2022-04-25 格式:PPTX 页数:145 大小:2.16MB
返回 下载 相关 举报
初计量经济学之模型的建立与估计中的问题及对策.pptx_第1页
第1页 / 共145页
初计量经济学之模型的建立与估计中的问题及对策.pptx_第2页
第2页 / 共145页
点击查看更多>>
资源描述

《初计量经济学之模型的建立与估计中的问题及对策.pptx》由会员分享,可在线阅读,更多相关《初计量经济学之模型的建立与估计中的问题及对策.pptx(145页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1第五章第五章 模型的建立与估计中的模型的建立与估计中的问题及对策问题及对策2本章内容第一节 误设定第二节 多重共线性第三节 异方差性第四节 自相关3 OLS估计量令人满意的性质,是根据一组假设条件而得到的。在实践中,如果某些假设条件不能满足,则OLS就不再适用于模型的估计。下面列出实践中可能碰到的一些常见问题: l误设定(Misspecification 或specification error) l多重共线性(Multicollinearity) l异方差性(Heteroscedasticity或Heteroskedasticity) l自相关(Autocorrelation) l 随机解

2、释变量(Stochastic explanatory variables)本章将对上述问题作简要讨论,主要介绍问题的后果、检测方法和解决途径。4第一节 误设定采用OLS法估计模型时,实际上有一个隐含的假设,即模型是正确设定的。这包括两方面的含义:函数形式正确和解释变量选择正确。在实践中,这样一个假设或许从来也不现实。我们可能犯下列三个方面的错误:l 选择错误的函数形式选择错误的函数形式l遗漏有关的解释变量遗漏有关的解释变量l包括无关的解释变量包括无关的解释变量从而造成所谓的“误设定”问题。5一. 选择错误的函数形式 这类错误中比较常见的是将非线性关系作为线性关系处理。函数形式选择错误,所建立的

3、模型当然无法反映所研究现象的实际情况,后果是显而易见的。因此,我们应当根据实际问题,选择正确的函数形式。 6 我们在前面各章的介绍中采用的函数形式以线性函数为主,上一章还介绍了因变量和解释变量都采用对数的双对数模型,下面再介绍几种比较常见的函数形式的模型,为读者的回归实践多提供几种选择方案。这几种模型是: 半对数模型 双曲函数模型 多项式回归模型71. 半对数模型半对数模型 半对数模型指的是因变量和解释变量中一个为对数形式而另一个为线性的模型。因变量为对数形式的称为对数对数-线性模型线性模型(log-lin model)。解释变量为对数形式的称为线性线性-对数模型对数模型(lin-log mo

4、del)。我们先介绍前者,其形式如下: 对数-线性模型中,斜率的含义是Y的百分比变动,即解释变量X变动一个单位引起的因变量Y的百分比变动。这是因为,利用微分可以得出: tttuXY10ln) 1(1ln1dXYdYdXdYYdXYd8 这表明,斜率度量的是解释变量X的单位变动所引起的因变量Y的相对变动。将此相对变动乘以100,就得到Y的百分比变动,或者说得到Y的增长率。由于对数-线性模型中斜率系数的这一含义,因而也叫增长模型增长模型 (growth model)。增长模型通常用于测度所关心的经济变量(如GDP)的增长率。例如,我们可以通过估计下面的半对数模型 得到一国GDP的年增长率的估计值,

5、这里t为时间趋势变量。ttutGDP10)ln(9线性-对数模型的形式如下: 与前面类似,我们可用微分得到 因此 这表明tttuXYln10XdXdY11XdXdYdXdYX1XXYXY的相对变动的绝对变动1 XXY1 上式表明,Y的绝对变动量等于 乘以X的相对变动量。因此, 线性-对数模型通常用于研究解释变量每变动1%引起的因变量的绝对变动量是多少这类问题。1102. 双曲函数模型双曲函数模型 双曲函数模型的形式为: 不难看出,这是一个仅存在变量非线性的模型,很容易用重新定义的方法将其线性化。 双曲函数模型的特点是,当X趋向无穷时,Y趋向 ,反映到图上,就是当X趋向无穷时,Y将无限靠近其渐近

6、线(Y = )。 双曲函数模型通常用于描述著名的恩格尔曲线和菲利普斯曲线。tttuXY11000113. 多项式回归模型多项式回归模型 多项式回归模型通常用于描述生产成本函数,其一般形式为: 其中Y表示总成本,X表示产出,P为多项式的阶数,一般不超过四阶。 多项式回归模型中,解释变量X以不同幂次出现在方程的右端。这类模型也仅存在变量非线性,因而很容易线性化,可用OLS法估计模型。2012.ptttpttYXXXu12二. 遗漏有关的解释变量 模型中遗漏了对因变量有显著影响的解释变量的后果是:将使模型参数估计量不再是无偏估计量。三. 包括无关的解释变量 模型中包括无关的解释变量,参数估计量仍无偏

7、,但会增大估计量的方差,即增大误差。 注 有关上述两点结论的说明请参见教科书P112-113。13四. 选择解释变量的四条原则 在模型设定中的一般原则是尽量不漏掉有关的解释变量。因为估计量有偏比增大误差更严重。但如果方差很大,得到的无偏估计量也就没有多大意义了,因此也不宜随意乱增加解释变量。 在回归实践中,有时要对某个变量是否应该作为解释变量包括在方程中作出准确的判断确实不是一件容易的事,因为目前还没有行之有效的方法可供使用。尽管如此,还是有一些有助于我们进行判断的原则可用,它们是:14选择解释变量的四条原则选择解释变量的四条原则 1. 理论: 从理论上看,该变量是否应该作为解释变 量包括 在

8、方程中? 2. t检验:该变量的系数估计值是否显著? 3. : 该变量加进方程中后, 是否增大? 4. 偏倚: 该变量加进方程中后,其它变量的系数 估计值是 否显著变化?2R2R如果对四个问题的回答都是肯定的,则该变量应该包括在方程中;如果对四个问题的回答都是“否”, 则该变量是无关变量,可以安全地从方程中删掉它。这是两种容易决策的情形。15 但根据以上原则判断并不总是这么简单。在很多情况下,这四项准则的判断结果会出现不一致。例如,有可能某个变量加进方程后, 增大,但该变量不显著。 2R 在选择变量的问题上,应当坚定不移地根据理论而不是满意的拟合结果来作决定,对于是否将一个变量包括在回归方程中

9、的问题,理论是最重要的判断准则。如果不这样做,产生不正确结果的风险很大。 在这种情况下,作出正确判断不是一件容易的事,处理的原则是将理论准则放在第一位。16*五、模型的选择五、模型的选择 上一段讨论了某个解释变量应否包括在模型中的几条原则。实践中,要解决的一个问题是如何从大量的潜在解释变量的集合中选择一个最合适的子集,以得到一个正确设定的模型。 上个世纪六十年代后相当一段时间,人们使用逐步回归法来解决解释变量的选择问题。这种由计算机机械挑选变量的做法如今已不流行了。目前比较通行的做法是从少量精心设定的备选模型中选择一个。 计量经济学家就此提出了很多基于统计学的选择标准,我们这里讨论其中几种,如

10、表51所示。17 令RSSj表示第j个模型(有kj个解释变量)的残差平方和,并定义 为第j个模型的的 估计值。我们 用表示包含全部k个解释变量的模型的 估计值。2jjjRSSnk2m221822/()/()(1)2()/()exp2(1)/ jjjjjjjmjjjjjppRRSSnkSRSSnknkCRSSkPCRSSnknkAICRSSkn表51 选择回归模型的准则准则 计算公式 19 1. 准则准则 希尔(Theil)的 准则基于如下假设:所考虑的模型中有一个是正确模型。对于正确模型, ,对于不正确模型, 。因此,选择 最小的模型一般就能选出正确模型。由于 最小化与 最大化是一回事,我们习

11、惯上称该准则为 最大准则。 这个准则的主要问题是,一个包括正确模型的所有解释变量但同时也包括一些无关变量的模型也会给出 ,在这种情况下,我们所选择的其实并非正确模型。当备选模型包含大量无关变量时,选出正确模型的概率较低。2R2R222R2R22()jE22()jE22()jE20 2. 基于预测的均方误差最小的三个准则基于预测的均方误差最小的三个准则 希尔的准则是基于回归的标准误差最小,下列三个准则则是基于预测的均方误差(MSE)最小。这三个准则是: 马娄斯(Mallows)的 准则 霍金(Hocking)的 准则 阿美米亚(Amemiya)的PC准则 假设正确的方程有k个解释变量,我们考虑的

12、方程有 个解释变量,问题是如何选择k1以及具体的k1个解释变量的集合。在上述三个预测准则中,这是通过使的均方误差 达到最小实现的,其中 是Y的未来值,而 是预测值。 1()kkfYfY2()ffE YYpCpS21 上述三个准则都是基于预测的均方误差最小,但在估计预测的均方误差时采用的假设有所不同,因而形成各自的计算公式,孰优孰劣,并无定论,在实践中可根据所用软件提供的输出结果选用其中一个作为模型选择的准则。具体做法是比较备选的几个模型的 、 或PC值,选其中最小的即可。 在三个预测准则的情况下,我们感兴趣的是改善预测的MSE,只要能改善,可以去掉某些变量,即便是正确模型中包括它们也在所不惜。

13、pCpS22 3. 赤池信息准则(赤池信息准则(AIC) 赤池信息准则(Akaikes Information Criterion,AIC)是一个更一般的准则,它可以应用于任何一个可用极大似然法估计的模型。对于我们这里的应用,AIC的计算公式为 与赤池信息准则类似的还有施瓦茨信息准则(Schwarz information criterion,SIC):上述两个准则与前述准则 一样,可用于模型选择,其值也是越小越好。2(1)/knRSSAICen(1)/knRSSSICnn23六. 检验误设定的RESET方法 前面给出了选择解释变量的四条原则。可是,有时这些原则不能提供足够的信息使研究人员确信

14、其设定是最恰当的,在这种情况下,可考虑使用一些更正规的检验方法来比较不同估计方程的性质。这类方法相当多,这里就不一一列出,仅介绍拉姆齐(J. B. Ramsey)的回归设定误差检验法(RESET法, Regression Specification Error Test)。24 RESET检验法的思路 RESET检验法的思路是在要检验的回归方程中加进 等项作为解释变量,然后看结果是否有显著改善。如有,则可判断原方程存在遗漏有关变量的问题或其它的误设定问题。 直观地看,这些添加的项是任何可能的遗漏变量或错误的函数形式的替身,如果这些替身能够通过F检验, 表明它们改善了原方程的拟合状况,则我们有理

15、由说原方程存在误设定问题。 另一方面, 等项形成多项式函数形式,多项式是一种强有力的曲线拟合装置,因而如果存在(函数形式方面的)误设定,则用这样一个装置可以很好地代表它们。432,YYY和432,YYY和25RESET检验法的步骤 拉姆齐RESET检验的具体步骤是:(1) 用OLS法估计要检验的方程,得到 (2) 由上一步得到的值 (i=1,2,n),计算 ,然后用OLS法估计: (3) 用F检验比较两个方程的拟合情况(类似于上一章中联合假设检验采用的方法),如果两方程总体拟合情况显著不同,则我们得出原方程可能存在误设定的结论。使用的检验统计量为: iiiXXY22110234,iiiYYY和

16、iYiiiiiiiuYYYXXY4534232211026) 1/(/ )(knRSSMRSSRSSFM其中:RSSM为第一步中回归(有约束回归)的残差平方和,RSS为第二步中回归(无约束回归)的残差平方和,M为约束条件的个数,这里是M=3。 应该指出的是,拉姆齐RESET检验仅能检验误设定的存在,而不能告诉我们到底是哪一类的误设定,或者说,不能告诉我们正确的模型是什么。但该方法毕竟能给出模型误设定的信号,以便我们去进一步查找问题。另一方面,如果模型设定正确,RESET检验使我们能够排除误设定的存在,转而去查找其它方面的问题。27例:误设定检验 为了检验第三章例3.7的模型设定是否正确,采用R

17、ESET方法,用例3.7中回归方程中得到的拟合值 ,计算 ,然后估计加上这一项作为解释变量的方程,EViews结果如下: tC2tC28表5-2 RESET检验Ramsey RESET Test: F-statistic44.48853 Prob. F(1,15)0.0000 Test Equation: Dependent Variable: Ct Method: Least Squares Sample: 1992 2009 VariableCoefficientStd. Errort-StatisticProb. C653.995113.2042549.529150.0000Yt0.36

18、26640.03429610.574670.0000FITTED2-0.0006730.000101-6.6699720.0000 R-squared0.993746 Mean dependent var1172.337Adjusted R-squared0.992912 S.D. dependent var243.5071S.E. of regression20.50091 Akaike info criterion9.029827Sum squared resid6304.310 Schwarz criterion9.178223Log likelihood-78.26845 Hannan

19、-Quinn criter.9.050289F-statistic1191.711 Durbin-Watson stat0.993814Prob(F-statistic)0.000000 29根据表5-2,辅助回归结果如下(括号内数字为标准误差):例3.7方程的RSS=25002.28。有了上述结果,计算检验统计量:查F表,5%显著性水平下的临界值 ,由于F=44.48864.28,故拒绝无误设定的原假设。22654.00.3630.00067(12.20)(0.034)(0.0001)0.996304.31tttCYCRRSS(25002.286304.31)/ 144.48866304.3

20、1 / 15F30 事实上,我们可以直接从EViews输出结果(表5.2)第二行中看到这一F值,以及与之相应的P值,即得到44.4885 这个F值的概率非常小,小数点后4位还是0,当然小于0.05,因而拒绝无误设定的原假设。 考虑到这里模型的误设定可能是漏掉了有关的解释变量,我们把价格指数作为解释变量加入方程,重新估计模型,得(与第四章例4.1相同):21085.910.1525.020.99(82.43)(0.004)(0.88)7899.54tttCYPRRSS31对上述模型重新进行RESET检验,结果如下(为节约篇幅,仅列出F 检验统计值行): 表5-3 RESET检验根据表5-3可知,

21、检验统计量F=3.753,对应的P值为0.073,大于0.05,故接受无误设定的原假设。F-statistic3.752960 Prob. F(1,14)0.073232第二节 多重共线性 应用OLS法的一个假设条件是;矩阵X的秩=K+110作为存在严重多重共线性的标准, 特别在解释变量多的情形应当如此。 需要指出的是,所有VIF值都低,并不能排除严重多重共线性的存在,这与使用相关系数矩阵检验的情况相似。5)(iVIF40 四 解决多重共线性的方法 思路:加入额外信息。 具体方法有以下几种: 增加数据 对模型施加某些约束条件 删除一个或几个共线变量 将模型适当变形1增加数据 多重共线性实质上是

22、数据问题,因此,增加数据就有可能消除或减缓多重共线性,具体方法包括增加观测值、利用不同的数据集或采用新的样本。41例:需求函数Yt = 1+2Xt+3Pt+ ut 在时间序列数据中,收入(X)和价格(P)往往是高度相关的,用时间序列数据估计往往会产生多重共线性。然而,在横截面数据中,则不存在这个问题,因为某个特定时点P为常数。如果取一横截面样本(如从5000个家庭取得的数据),则可用来估计 Yi = 1+2Xi+ ui 然后将得到的估计值 作为一个约束条件(2 = )施加于时间序列数据的回归计算中,即估计 Yt - Xt =1+3Pt+ ut ,得到 , 。22213422对模型施加某些约束条

23、件 在存在多重共线性的模型中,依据经济理论施加某些约束条件,将减小系数估计量的方差,如在CobbDouglas生产函数中加进规模效益不变的约束,可解决资本和劳动的高度相关而引起的多重共线性问题。 3删除一个或几个共线变量 这样做,实际上就是利用给定数据估计较少的参数,从而降低对观测信息的需求,以解决多重共线性问题。删除哪些变量,可根据假设检验的结果确定。 应注意的是,这种做法可能会使得到的系数估计量产生偏倚,因而需要权衡利弊。 434将模型适当变形例1某商品的需求函数为:其中:Q = 需求量, X = 收入, P = 该商品的价格, P* = 替代商品的价格 在实际数据中,P和P*往往呈同方向

24、变动,它们之间高度相关,模型存在多重共线性。 如果我们仅要求在知道两种商品的相对价格变动时,对需求量进行预测,则可将需求函数变为: 就可以解决多重共线性问题。u*3210PPXQvPPXQ)(*32144例2有滞后变量的情形 Yt = 1+2Xt+3 Xt-1 + ut 一般而言,Xt和Xt 1往往高度相关,将模型变换为: Yt = 1+2(Xt - Xt 1)+3Xt -1+ ut 其中3=3 +2 经验表明:Xt和Xt 1的相关程度要远远小于和Xt和Xt 1的相关程度,因而这种变换有可能消除或减缓多重共线性。455主成分法 可将共线变量组合在一起形成一个综合指数(变量),用它来代表这组变量

25、。构造综合指数的最常用方法是主成分法。主成分法的计算相当复杂,这里不做介绍。 主成分的特点是,各主成分之间互不相关,并且,用很少几个主成分就可以解释全部X变量的绝大部分方差,因而在出现多重共线性时,可以用主成分替代原有解释变量进行回归计算,然后再将所得到的系数还原成原模型中的参数估计值。46五. 处理多重共线性问题的原则1. 多重共线性是普遍存在的,轻微的多重共线性问题可不 采取措施。3. 如果模型仅用于预测,则只要拟合好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不 影响预测结果。2. 严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数的符号,重要的解释

26、变量t 值很低。要根据不同情况采取必要措施。47(1)E(ut)=0, t=1,2,n. 扰动项均值为0 (2)Cov(ui,uj) = E(uiuj) =0, ij. 扰动项相互独立 (3)Var(ut) = E(ut) = 2 , t=1,2,n. 常数方差 (4)ut N(0,2). 正态性 对于(1),我们可论证其合理性。而第(4)条,也没有多大问题。大样本即可假定扰动项服从正态分布。而对于(2),(3)两条,则无法论证其合理性。实际问题中,这两条不成立的情况比比皆是。下面将讨论它们不成立的情况,即异方差性和自相关的情形。第三节 异方差性 回顾我们应用OLS法所需假设条件,其中大部分是

27、有关扰动项的统计假设,它们是:48一 异方差性及其后果1定义 若Var(ut) = = 常数的假设不成立,即 Var(ut) = 常数,则称扰动项具有异方差性。22t2 什么情况下可能发生异方差性问题? 解释变量取值变动幅度大时,常数方差的假设往往难以成立。异方差性主要发生在横截面数据的情况,时间序列问题中一般不会发生,除非时间跨度过大。49例:Yi = +Xi+ ui 其中:Y=指定规模和组成的家庭每月消费支出 X=这样的家庭的每月可支配收入 设X的N个观测值取自一个家庭可支配收入的横截面样本。某些家庭接近于勉强维持生存的水平,另一些家庭则有很高的收入。 不难设想,低收入家庭的消费支出不大可

28、能离开他们的均值E(Y)过远,太高无法支持,太低则消费将处于维持生存的水平之下。因此,低收入家庭消费支出额的波动应当较小,因而扰动项具有较小的方差。而高收入家庭则没有这种限制,其扰动项可能有大得多的方差。这就意味着异方差性。50 3异方差性的后果(1)参数估计量不再具有最小方差的性质 异方差性不破坏OLS估计量的无偏性,但不再是有效的。 事实上,异方差性的存在导致OLS估计量既不是有效的,也不具有渐近有效性。 这有两层含义。首先,小样本性质BLUE的丧失意味着存在着另外的线性无偏估计量,其抽样方差小于OLS估计量的方差。其次,渐近有效性这一大样本性质的丧失,意味着存在着另外的一致估计量,其抽样

29、分布当样本容量增大时,向被估计的回归参数收缩的速度要比OLS估计量快。 12() X XX X51(2)系数的显著性检验 更为严重的是,在异方差性的情况下, 矩阵主对角元素不再是OLS估计量方差的无偏估计量,从而导致系数的置信区间和假设检验结果不可信赖。 例如在双变量模型中,如果 倾向于低估的真实方差,则置信区间可能要比实际的窄,给我们一个错误信息,好象得到的点预测值很精确。同样,在异方差性的情况下,假设检验也会以错误的结果将我们带入歧途。例如,被检验的系数实际上不是统计上显著的,而由于矩阵 的主对角元素低估了OLS估 计量的相应方差,检验结果却表明其显著。22/x12) (X X(X X52

30、二 异方差性的检验 异方差性后果的严重性意味着我们在实践中必须了解是否存在异方差性。 常用的检验方法有: 斯皮尔曼等级相关检验法(Spearman Rank Relation test) 戈德弗尔德匡特检验法(Goldfeld Quandt test) 格里瑟检验法(Glesjer test) 帕克检验法(Park test) 怀特检验法 (Whites General Heteroscedasticity test) 布鲁奇帕根检验法(Breusch-Pagan Test)531.戈德弗尔德匡特检验法基本思路:假定 随Yt的数值大小变动。检验步骤:(1)将数据分为三组:小Yt值组,中Yt值组

31、,大Yt值组(数据项大致相等)(2)对小Yt值组估计模型,给出 (3)对大Yt值组估计模型,给出 2t11221kne13223kne54 (4) H0: H1: (或 ) 检验统计量为F0 = F(n3-k-1, n1-k-1) 若F0Fc,则拒绝H0,存在异方差性。 232123212321212355例5:S=+Y + u 其中:S=储蓄 Y=收入 设 195160年, =0.01625 197079年, =0.9725 F0 = 0.9725/0.01625=59.9 查表得: d.f.为(8,8)时,5% Fc=3.44 F0Fc 因而拒绝H0。 结论:存在异方差性。2123562.

32、 怀特检验法怀特检验法(Whites General Heteroscedasticity Test) 怀特提出的检验异方差性的方法在实践中用起来很方便,下面用一个三变量线性模型扼要说明其检验步骤。设模型如下:White检验步骤如下: (1)用OLS法估计(1)式,得到残差e i ; (2)进行如下辅助回归01122(1)iiiiYXXu222011223142512(2)iiiiiiiieXXXXX Xv即残差平方对所有原始变量、变量平方以及变量交叉积回归,得到R2值;57(3)进行假设检验 原假设 H0:不存在异方差性(即方程(2)全部 斜率系数均为零) 备择假设 H1:存在异方差性(即H

33、0不成立) 怀特证明了下面的命题: 在 原假设 H0成立的情况下,从(2)式得到的R2值与观测值数目(n)的乘积(n R2)服从自由度为 k的2分布,自由度 k 为(2)式中解释变量的个数。即 n R2 2(k) 因此,怀特检验的检验统计量就是n R2 ,其抽样分布为自由度为k的2分布。 检验步骤类似于t检验和F检验。583布鲁奇布鲁奇-帕根检验法帕根检验法 设模型 011.(5.15)kkYXXu满足扰动项均值为0的假设,因而OLS估计量无偏且一致。检验该模型是否存在异方差性的原假设为:20220:( ):()(5.16)或HVar uHE u59检验的思路是将对异方差性的检验转换为对 是否

34、与一个或多个解释变量相关的检验。 如果 不成立,则 的期望值可以表示为各解释变量的函数,简单的方法是假定线性函数:2u0H2011.(5.17)kkuXXv其中v是均值为0的误差项。这里的因变量 是原回归方程(5.15)中误差项的平方。同方差性的原假设(5.16)转换为:2u012:.0(5.18)kH60 要检验此假设,可用我们在第四章中介绍的检验全部斜率系数为0的F检验,唯一的问题是作为因变量的 无法观测,可以用原模型(5.15)回归得到的OLS残差平方 代替之,要估计的方程变为:相应的检验统计量为2e2011.(5.19)kkeXXv2*2*/( ,1)(1)/(1)RkFF k nkR

35、nk61其中 是(5.19)式回归得到的决定系数,以区别于原方程(5.15)回归的决定系数 。 我们也可以计算LM检验统计量来检验原假设(5.18 ):2*R2R22*( )LMn Rk此检验通常称为布鲁奇布鲁奇-帕根异方差性检验帕根异方差性检验(BP检验)。 62下面总结一下BP检验的步骤:(1)用OLS法估计模型(5.15),得到OLS残差序列 ,计算序列 ;(2)对方程(5.19)执行OLS回归,保存该回归的 值;(3)计算F或LM统计值,若大于临界值,则拒绝原假设,判断存在异方差性。2ie,1,2,.,iein2*R63三 广义最小二乘法1消除异方差性的思路 基本思路:变换原模型,使经

36、过变换后的模型具有同方差性,然后再用OLS法进行估计。 对于模型 Yt = 0+1X1t+k Xkt+ ut (1) 若扰动项满足 E(ut) = 0,E(uiuj) = 0, ij, 但 E(ut2) = t2 常数. 也就是说,该模型只有同方差性这一条件不满足,则只要能将具有异方差性的扰动项的方差表示成如下形式: 222( )1,2,.tttVar utn 64 由于所以变换后模型的扰动项的方差为常数,可以应用OLS法进行估计,得到的参数估计量为BLUE。但这里得到的OLS估计量是变模后模型(2)的OLS估计量。对于原模型而言,它已不是OLS估计量,称为广称为广义最小二乘估计量(义最小二乘

37、估计量(GLS估计量)。估计量)。011.(2)ttKttKtttttYXXu222221)(1)(ttttttuVaruVar 其中 为一未知常数, 表示一组已知数值,则用t去除模型各项,得变换模型:22t652 广义最小二乘法广义最小二乘法(Generalized least squares) 下面用矩阵形式的模型来推导出GLS估计量的一般计算公式。 设GLS模型为 (1) 满足 E(u)= 0,E(uu)=2, X 非随机, X的秩=K+1n, 其中为正定矩阵。 YXu66 根据矩阵代数知识可知,对于任一正定矩阵,存在着一个满秩(非退化,非奇异)矩阵P P,使得用P-1左乘原模型(1)(

38、对原模型进行变换):令 Y* = P-1Y ,X* = P-1X,u* = P-1u,得到 Y*= X*+ u* (2) 下面的问题是,模型(2)的扰动项u*是否 满足OLS法的基本假设条件。1,(-1-1 = PPP ) P-1-1-1P Y = P X+P u67我们有()() )EE-1-1*u uP uu (P11()()E PuuP121()() P P2)-1-1P (PP )(P2()-1-1P P)(P P2I68这表明,模型(2)中的扰动项u*满足OLS法的基本假设,可直接用OLS估计,估计量向量这就是广义最小二乘估计量(GLS估计量) 的公式,该估计量是BLUE。 从上述证

39、明过程可知,我们可将GLS法应用于为任意正定矩阵的情形。*-1* = (X X ) X Y( -1-1-1-1-1X (P ) P X) X (P ) P Y(-1-1-1X X) X Y69如果只存在异方差性,则222212.000.0.000.00nntt,.,2 , 1, 02其中我们显然有2()E uu120 0.000.0.0 0 0.nPP70111210 0.0100.0().10 0 0.nPP21212210 0.0100.0.10 0 0.n71四、解决异方差问题的方法四、解决异方差问题的方法1. 可行广义最小二乘法(可行广义最小二乘法(FGLS法)法) 广义最小二乘法从理

40、论上解决了扰动项存在异方差性的情况下模型的估计问题,但在实践中是否可行呢? 从GLS估计量的公式可知,要计算GLS估计值,我们必须知道 矩阵。而实际问题中 矩阵极少为已知。因此,在实践中直接应用GLS法基本上不可行。72 但在很多情况下,我们可以根据实际问题提供的信息估计 矩阵,再应用GLS法,这种方法称为可行广可行广义最小二乘法义最小二乘法(Feasible Generalized Least Squares, FGLS)。 例如在仅存在异方差性的情况下,如果在实际问题中,研究人员确信可以准确估计异方差性的结构,如扰动项方差与某个解释变量成正比,就可以采用FGLS法。由于FGLS法的核心是估

41、计 矩阵,因此亦称为估计的广义最小二乘法估计的广义最小二乘法(Estimated Generalized Least Squares, EGLS)。73 FGLS法的第一步是确定异方差性的具体形式,也就是找出决定扰动项方差与某组已知数值之间关系的函数形式,然后用这个关系得到每个扰动项方差的估计值,从而得到 矩阵的估计值 ,最后计算FGLS估计量 :FGLS111()FGLSX XX Y74例1 Yt = 1+2Xt+ ut t=1,2,n.其中 Y=家庭消费支出 X=家庭可支配收入 我们在前面已分析过,高收入家庭有较大的扰动项方差,因此不妨假定扰动项方差与可支配收入成正比,即 Var(ut)=

42、Xt , t=1,2,n. 式中是一未知常数,由于Xt为已知,相当于 ,而相当于 ,因此 应用GLS法,即可得出的FGLS估计量。2t21200.000.0.000.nXXX75 在上例中我们假设扰动项方差与解释变量的取值成正比,这种假设是否真正合理呢?根据经验和分析做出的这种假设,虽然有一定道理,但未免显得过于武断,这方面还可做一些比较细致的工作。 Glesjer检验法不仅可检验异方差性的存在,还可用于提供有关异方差形式的进一步信息,对于确定矩阵很有用,下面我们扼要说明格里瑟检验法的思路和步骤。 76格里瑟检验法的思路 格里瑟检验法的思路是假定扰动项方差与解释变量之间存在幂次关系,方法是用

43、对被认为与扰动项方差有关的解释变量回归,确定 和该解释变量的关系。由于与该解释变量之间关系的实际形式是未知的,因此需要用该解释变量的不同幂次进行试验,选择出最佳拟合形式。 具体步骤如下:tete77 (1)因变量Y对所有解释变量回归,计算残差et (t=1,2,n)(2) 对所选择解释变量的各种幂次形式回归,如 然后利用决定系数,选择拟合最佳的函数形式。(3)对1进行显著性检验,若显著异于0,则表明存在异方差性,否则再试其它形式。.1101010210tjtttjtttjtttjttuXeuXeuXeuXete78 例2 Yt = 1+2X1t+k Xkt+ ut 假设我们根据经验知道扰动项方

44、差与Xjt有关,并用格里瑟法试验,得出: 则 jttX2在大多数应用中,由于通过矩阵运算计算相对复杂,因而对于仅存在异方差性的问题,通常采用另一种等价的方法加权最小二乘法加权最小二乘法(WLS)。120 0.000.0.0 0 0.jjjnXXX 79加权最小二乘法加权最小二乘法 对于仅存在异方差性的问题,其矩阵是一个对角矩阵,即 在这种情况下应用广义最小二乘法,也就是在原模型两端左乘矩阵变换原模型,再对变换后的模型应用普通最小二乘法进行估计。21222n11211.1nP80这种作法实际上等价于在代数形式的原模型 Yt = 0+1X1 t+k X k t+ u t 的两端除以 t,得变换模型

45、:tttKtKtttttuXXY110相当于在回归中给因变量和解释变量的每个观测值都 赋 予 一 个 与 相 应 扰 动 项 的 方 差 相 联 系 的 权数 ,然后再对这些变换后的数据进行OLS回归,因而被称为加权最小二乘法(WLS法, Weighted Least Squares)。),.,2 , 1,1(ntt81 加权最小二乘法是FGLS法的一个特例,在 矩阵为对角矩阵这种特殊情形下,我们既可以直接应用矩阵形式的可行广义最小二乘估计量公式得到FGLS估计值,亦可避开矩阵运算,采用加权最小二乘法得到其WLS估计值,两者结果完全相同,无论你称之为FGLS估计值还是WLS估计值,二者是一码事

46、。例例: : 其中:Y=R&D支出,X=销售额 采用美国1988年18个行业的数据估计上述方程,结果如下(括号中数字为t值):12(1)iiiYXu82 这里是横截面数据,由于行业之间的差别,可能存在异方差性。)8434. 3()1948. 0(4783. 00319. 099.1922RXYii 假设 应用格里瑟法试验,得到异方差性形式为:iiX2将原模型(1)的两端除以 ,得iX)2(121iiiiiiXuXXXY83 用OLS法估计(2)式,结果如下(括号中数字为t值): 与(1)式的结果比较,两个方程斜率系数的估计值相差不大,但采用WLS法估计的比直接用OLS法估计的系数更为显著。21

47、246.680.03680.6258( 0.647)(5.172)iiiiYXRXX 842. 仍采用仍采用OLS法估计系数,法估计系数, 但采用但采用OLS估计量标准估计量标准误差的异方差性一致估计值代替其误差的异方差性一致估计值代替其OLS估计值估计值 怀特(H. White)在1980年提出的产生OLS估计量的异方差性一致标准误差的方法,为解决异方差性问题提供了另一种途径。 怀特的贡献是解决了异方差性造成系数的置信区间和假设检验结果不可信赖的问题,该后果是由于方差的OLS估计量不再是无偏估计量而造成的。85 我们用简单线性回归模型对怀特方法作一说明。在异方差的情况下, 的方差是 可以证明

48、, 将涉及所有的 ,而不是一个共同的 。这意味着回归软件包所报告的 作为 的方差估计值有两个错误。第一,它用的不是方差的正确公式(5.25);第二,它用 估计一个共同的 ,而事实上诸 是不同的。 OLS222222()()/()(5.25)olsiiiiiiiVarVarkukxx22()(/(2)iE sEen2i222/isxOLS2s22i86怀特的方法是在(5.25)式中用 取代 ,这里 是第i个OLS残差,即2ie2iie222 2()/()(5.26)OLSiiiWhite s Varx ex请注意,我们并不能用 得到 的一致估计量,因为在这种情况下,每个要估计的参数仅有一个观测值

49、,当样本增大时,未知的的数目也在同步增加。怀特得到的是 的一致估计量,它是 的加权平均。同样的分析适用于多元回归OLS估计量的情况,在这种情况下,用怀特方法得到的第K个OLS回归系数的方差的异方差性一致估计值由下式给出:2ie2i()olsVar2ie87其中 是从 对方程中所有其它解释变量回归得到的OLS残差 的平方, 为原多元回归模型的第i个OLS残差。很多回归软件包提供诸方差的怀特异方差性一致估计值以及对应的稳健t统计值(robust t-statistics)。例如,使用EViews,先点击Quick,选择Estimate Equation,再击Options,从下拉菜单中选其中的一个

50、选项White,即可得到诸方差的异方差性一致估计值。 2kkXie222211()/()nnkkiikiiiWhite s Vare88 通过使用诸方差的怀特异方差性一致估计值代替其OLS估计值,我们解决了异方差性造成系数的置信区间和假设检验结果不可信赖的问题,从而也就解决了在异方差性存在的情况下能否使用OLS法估计方程的问题。 结论是我们仍可用OLS法估计方程的系数,因为尽管存在异方差性,系数的OLS估计量毕竟还是无偏和一致估计量,应该说还是具有良好性质的估计量。只不过方差-协方差矩阵不能再用OLS法估计,而要采用怀特之类的方法,得到一致估计量,如怀特的异方差性一致估计量。89 这类估计量的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 财务管理

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁