模型的建立和估计中的问题与对策.ppt

上传人:石*** 文档编号:39349512 上传时间:2022-09-07 格式:PPT 页数:104 大小:3.67MB
返回 下载 相关 举报
模型的建立和估计中的问题与对策.ppt_第1页
第1页 / 共104页
模型的建立和估计中的问题与对策.ppt_第2页
第2页 / 共104页
点击查看更多>>
资源描述

《模型的建立和估计中的问题与对策.ppt》由会员分享,可在线阅读,更多相关《模型的建立和估计中的问题与对策.ppt(104页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、模型的建立和估计中的问题与对策现在学习的是第1页,共104页本章内容第一节 误设定第二节 多重共线性第三节 异方差性第四节 自相关现在学习的是第2页,共104页 OLS估计量令人满意的性质,是根据一组假设条件而得到的。在实践中,如果某些假设条件不能满足,则OLS就不再适用于模型的估计。下面列出实践中可能碰到的一些常见问题:l误设定(Misspecification 或specification error)l多重共线性(Multicollinearity)l异方差性(Heteroscedasticity或Heteroskedasticity)l自相关(Autocorrelation)本章将对上

2、述问题作简要讨论,主要介绍问题的后果、检测方法和解决途径。现在学习的是第3页,共104页第一节 误设定采用OLS法估计模型时,实际上有一个隐含的假设,即模型是正确设定的。这包括两方面的含义:函数形式正确和解释变量选择正确。在实践中,这样一个假设或许从来也不现实。我们可能犯下列三个方面的错误:l 选择错误的函数形式选择错误的函数形式l遗漏有关的解释变量遗漏有关的解释变量l包括无关的解释变量包括无关的解释变量从而造成所谓的“误设定”问题。现在学习的是第4页,共104页一.选择错误的函数形式 这类错误中比较常见的是将非线性关系作为线性关系处理。函数形式选择错误,所建立的模型当然无法反映所研究现象的实

3、际情况,后果是显而易见的。因此,我们应当根据实际问题,选择正确的函数形式。现在学习的是第5页,共104页 我们在前面各章的介绍中采用的函数形式以线性函数为主,上一章还介绍了因变量和解释变量都采用对数的双对数模型,下面再介绍几种比较常见的函数形式的模型,为读者的回归实践多提供几种选择方案。这几种模型是:半对数模型 双曲函数模型 多项式回归模型现在学习的是第6页,共104页1.半对数模型半对数模型 半对数模型指的是因变量和解释变量中一个为对数形式而另一个为线性的模型。因变量为对数形式的称为对对数数-线性模型线性模型(log-lin model)。解释变量为对数形式的称为线线性性-对数模型对数模型(

4、lin-log model)。我们先介绍前者,其形式如下:对数-线性模型中,斜率的含义是Y的百分比变动,即解释变量X变动一个单位引起的因变量Y的百分比变动。这是因为,利用微分可以得出:tttuXY10ln)1(1ln1dXYdYdXdYYdXYd现在学习的是第7页,共104页 这表明,斜率度量的是解释变量X的单位变动所引起的因变量Y的相对变动。将此相对变动乘以100,就得到Y的百分比变动,或者说得到Y的增长率。由于对数-线性模型中斜率系数的这一含义,因而也叫增长模型增长模型(growth model)。增长模型通常用于测度所关心的经济变量(如GDP)的增长率。例如,我们可以通过估计下面的半对数

5、模型 得到一国GDP的年增长率的估计值,这里t为时间趋势变量。ttutGDP10)ln(现在学习的是第8页,共104页线性-对数模型的形式如下:与前面类似,我们可用微分得到 因此 这表明tttuXYln10XdXdY11XdXdYdXdYX1XXYXY的相对变动的绝对变动1 XXY1 上式表明,Y的绝对变动量等于 乘以X的相对变动量。因此,线性-对数模型通常用于研究解释变量每变动1%引起的因变量的绝对变动量是多少这类问题。1现在学习的是第9页,共104页2.双曲函数模型双曲函数模型 双曲函数模型的形式为:不难看出,这是一个仅存在变量非线性的模型,很容易用重新定义的方法将其线性化。双曲函数模型的

6、特点是,当X趋向无穷时,Y趋向 ,反映到图上,就是当X趋向无穷时,Y将无限靠近其渐近线(Y=)。双曲函数模型通常用于描述著名的恩格尔曲线和菲利普斯曲线。tttuXY11000现在学习的是第10页,共104页3.多项式回归模型多项式回归模型 多项式回归模型通常用于描述生产成本函数,其一般形式为:其中Y表示总成本,X表示产出,P为多项式的阶数,一般不超过四阶。多项式回归模型中,解释变量X以不同幂次出现在方程的右端。这类模型也仅存在变量非线性,因而很容易线性化,可用OLS法估计模型。2012.ptttpttYXXXu现在学习的是第11页,共104页二.遗漏有关的解释变量 模型中遗漏了对因变量有显著影

7、响的解释变量的后果是:将使模型参数估计量不再是无偏估计量。三.包括无关的解释变量 模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。注 有关上述两点结论的说明请参见教科书P112-113。现在学习的是第12页,共104页四.选择解释变量的四条原则 在模型设定中的一般原则是尽量不漏掉有关的解释变量。因为估计量有偏比增大误差更严重。但如果方差很大,得到的无偏估计量也就没有多大意义了,因此也不宜随意乱增加解释变量。在回归实践中,有时要对某个变量是否应该作为解释变量包括在方程中作出准确的判断确实不是一件容易的事,因为目前还没有行之有效的方法可供使用。尽管如此,还是有一些有助

8、于我们进行判断的原则可用,它们是:现在学习的是第13页,共104页选择解释变量的四条原则选择解释变量的四条原则 1.理论:从理论上看,该变量是否应该作为解释变 量包括 在方程中?2.t检验:该变量的系数估计值是否显著?3.:该变量加进方程中后,是否增大?4.偏倚:该变量加进方程中后,其它变量的系数 估计值是 否显著变化?2R2R如果对四个问题的回答都是肯定的,则该变量应该包括在方程中;如果对四个问题的回答都是“否”,则该变量是无关变量,可以安全地从方程中删掉它。这是两种容易决策的情形。现在学习的是第14页,共104页 但根据以上准则判断并不总是这么简单。在很多情况下,这四项准则的判断结果会出现

9、不一致。例如,有可能某个变量加进方程后,增大,但该变量不显著。2R 在选择变量的问题上,应当坚定不移地根据理论而不是满意的拟合结果来作决定,对于是否将一个变量包括在回归方程中的问题,理论是最重要的判断准则。如果不这样做,产生不正确结果的风险很大。在这种情况下,作出正确判断不是一件容易的事,处理的原则是将理论准则放在第一位。现在学习的是第15页,共104页*五、模型的选择五、模型的选择 上一段讨论了某个解释变量应否包括在模型中的几条原则。实践中,要解决的一个问题是如何从大量的潜在解释变量的集合中选择一个最合适的子集,以得到一个正确设定的模型。上个世纪六十年代后相当一段时间,人们使用逐步回归法来解

10、决解释变量的选择问题。这种由计算机机械挑选变量的做法如今已不流行了。目前比较通行的做法是从少量精心设定的备选模型中选择一个。计量经济学家就此提出了很多基于统计学的选择标准,我们这里讨论其中几种,如表51所示。现在学习的是第16页,共104页 令RSSj表示第j个模型(有kj个解释变量)的残差平方和,并定义 为第j个模型的的 估计值。我们 用表示包含全部k个解释变量的模型的 估计值。2jjjRSSnk2m22现在学习的是第17页,共104页22/()/()(1)2()/()exp2(1)/jjjjjjjmjjjjjppRRSSnkSRSSnknkCRSSkPCRSSnknkAICRSSkn表51

11、 选择回归模型的准则准则 计算公式 现在学习的是第18页,共104页 1.准则准则 希尔(Theil)的 准则基于如下假设:所考虑的模型中有一个是正确模型。对于正确模型,对于不正确模型,。因此,选择 最小的模型一般就能选出正确模型。由于 最小化与 最大化是一回事,我们习惯上称该准则为 最大准则。这个准则的主要问题是,一个包括正确模型的所有解释变量但同时也包括一些无关变量的模型也会给出 ,在这种情况下,我们所选择的其实并非正确模型。当备选模型包含大量无关变量时,选出正确模型的概率较低。2R2R222R2R22()jE22()jE22()jE现在学习的是第19页,共104页 2.基于预测的均方误差

12、最小的三个准则基于预测的均方误差最小的三个准则 希尔的准则是基于回归的标准误差最小,下列三个准则则是基于预测的均方误差(MSE)最小。这三个准则是:马娄斯(Mallows)的 准则 霍金(Hocking)的 准则 阿美米亚(Amemiya)的PC准则 假设正确的方程有k个解释变量,我们考虑的方程有 个解释变量,问题是如何选择k1以及具体的k1个解释变量的集合。在上述三个预测准则中,这是通过使的均方误差 达到最小实现的,其中 是Y的未来值,而 是预测值。1()kkfYfY2()ffE YYpCpS现在学习的是第20页,共104页 上述三个准则都是基于预测的均方误差最小,但在估计预测的均方误差时采

13、用的假设有所不同,因而形成各自的计算公式,孰优孰劣,并无定论,在实践中可根据所用软件提供的输出结果选用其中一个作为模型选择的准则。具体做法是比较备选的几个模型的 、或PC值,选其中最小的即可。在三个预测准则的情况下,我们感兴趣的是改善预测的MSE,只要能改善,可以去掉某些变量,即便是正确模型中包括它们也在所不惜。pCpS现在学习的是第21页,共104页 3.赤池信息准则(赤池信息准则(AIC)赤池信息准则(Akaikes Information Criterion,AIC)是一个更一般的准则,它可以应用于任何一个可用极大似然法估计的模型。对于我们这里的应用,AIC的计算公式为 与赤池信息准则类

14、似的还有施瓦茨信息准则(Schwarz information criterion,SIC):上述两个准则与前述准则 一样,可用于模型选择,其值也是越小越好。2(1)/knRSSAICen(1)/knRSSSICnn现在学习的是第22页,共104页六.检验误设定的RESET方法 前面给出了选择解释变量的四条原则。可是,有时这些原则不能提供足够的信息使研究人员确信其设定是最恰当的,在这种情况下,可考虑使用一些更正规的检验方法来比较不同估计方程的性质。这类方法相当多,这里就不一一列出,仅介绍拉姆齐(J.B.Ramsey)的回归设定误差检验法(RESET法,Regression Specificat

15、ion Error Test)。现在学习的是第23页,共104页 RESET检验法的思路 RESET检验法的思路是在要检验的回归方程中加进 等项作为解释变量,然后看结果是否有显著改善。如有,则可判断原方程存在遗漏有关变量的问题或其它的误设定问题。直观地看,这些添加的项是任何可能的遗漏变量或错误的函数形式的替身,如果这些替身能够通过F检验,表明它们改善了原方程的拟合状况,则我们有理由说原方程存在误设定问题。另一方面,等项形成多项式函数形式,多项式是一种强有力的曲线拟合装置,因而如果存在(函数形式方面的)误设定,则用这样一个装置可以很好地代表它们。432,YYY和432,YYY和现在学习的是第24

16、页,共104页RESET检验法的步骤 拉姆齐RESET检验的具体步骤是:(1)用OLS法估计要检验的方程,得到 (2)由上一步得到的值 (i=1,2,n),计算 ,然后用OLS法估计:(3)用F检验比较两个方程的拟合情况(类似于上一章中联合假设检验采用的方法),如果两方程总体拟合情况显著不同,则我们得出原方程可能存在误设定的结论。使用的检验统计量为:iiiXXY22110234,iiiYYY和iYiiiiiiiuYYYXXY45342322110现在学习的是第25页,共104页)1/(/)(knRSSMRSSRSSFM其中:RSSM为第一步中回归(有约束回归)的残差平方和,RSS为第二步中回归

17、(无约束回归)的残差平方和,M为约束条件的个数,这里是M=3。应该指出的是,拉姆齐RESET检验仅能检验误设定的存在,而不能告诉我们到底是哪一类的误设定,或者说,不能告诉我们正确的模型是什么。但该方法毕竟能给出模型误设定的信号,以便我们去进一步查找问题。另一方面,如果模型设定正确,RESET检验使我们能够排除误设定的存在,转而去查找其它方面的问题。现在学习的是第26页,共104页第二节 多重共线性 应用OLS法的一个假设条件是;矩阵X的秩=K+110作为存在严重多重共线性的标准,特别在解释变量多的情形应当如此。需要指出的是,所有VIF值都低,并不能排除严重多重共线性的存在,这与使用相关系数矩阵

18、检验的情况相似。5)(iVIF现在学习的是第34页,共104页 四 解决多重共线性的方法 思路:加入额外信息。具体方法有以下几种:增加数据 对模型施加某些约束条件 删除一个或几个共线变量 将模型适当变形1增加数据 多重共线性实质上是数据问题,因此,增加数据就有可能消除或减缓多重共线性,具体方法包括增加观测值、利用不同的数据集或采用新的样本。现在学习的是第35页,共104页例:需求函数Yt=1+2Xt+3Pt+ut 在时间序列数据中,收入(X)和价格(P)往往是高度相关的,用时间序列数据估计往往会产生多重共线性。然而,在横截面数据中,则不存在这个问题,因为某个特定时点P为常数。如果取一横截面样本

19、(如从5000个家庭取得的数据),则可用来估计 Yi=1+2Xi+ui 然后将得到的估计值 作为一个约束条件(2=)施加于时间序列数据的回归计算中,即估计 Yt-Xt =1+3Pt+ut,得到 ,。22213现在学习的是第36页,共104页2对模型施加某些约束条件 在存在多重共线性的模型中,依据经济理论施加某些约束条件,将减小系数估计量的方差,如在CobbDouglas生产函数中加进规模效益不变的约束,可解决资本和劳动的高度相关而引起的多重共线性问题。3删除一个或几个共线变量 这样做,实际上就是利用给定数据估计较少的参数,从而降低对观测信息的需求,以解决多重共线性问题。删除哪些变量,可根据假设

20、检验的结果确定。应注意的是,这种做法可能会使得到的系数估计量产生偏倚,因而需要权衡利弊。现在学习的是第37页,共104页4将模型适当变形例1某商品的需求函数为:其中:Q=需求量,X=收入,P=该商品的价格,P*=替代商品的价格 在实际数据中,P和P*往往呈同方向变动,它们之间高度相关,模型存在多重共线性。如果我们仅要求在知道两种商品的相对价格变动时,对需求量进行预测,则可将需求函数变为:就可以解决多重共线性问题。u*3210PPXQvPPXQ)(*321现在学习的是第38页,共104页例2有滞后变量的情形 Yt=1+2Xt+3 Xt-1+ut 一般而言,Xt和Xt 1往往高度相关,将模型变换为

21、:Yt=1+2(Xt-Xt 1)+3Xt-1+ut 其中3=3+2 经验表明:Xt和Xt 1的相关程度要远远小于和Xt和Xt 1的相关程度,因而这种变换有可能消除或减缓多重共线性。现在学习的是第39页,共104页5主成分法 可将共线变量组合在一起形成一个综合指数(变量),用它来代表这组变量。构造综合指数的最常用方法是主成分法。主成分法的计算相当复杂,这里不做介绍。主成分的特点是,各主成分之间互不相关,并且,用很少几个主成分就可以解释全部X变量的绝大部分方差,因而在出现多重共线性时,可以用主成分替代原有解释变量进行回归计算,然后再将所得到的系数还原成原模型中的参数估计值。现在学习的是第40页,共

22、104页五.处理多重共线性问题的原则1.多重共线性是普遍存在的,轻微的多重共线性问题可不 采取措施。3.如果模型仅用于预测,则只要拟合好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不 影响预测结果。2.严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数的符号,重要的解释变量t 值很低。要根据不同情况采取必要措施。现在学习的是第41页,共104页(1)E(ut)=0,t=1,2,n.扰动项均值为0 (2)Cov(ui,uj)=E(uiuj)=0,ij.扰动项相互独立 (3)Var(ut)=E(ut)=2,t=1,2,n.常数方差 (4)ut N(0,2).正

23、态性 对于(1),我们可论证其合理性。而第(4)条,也没有多大问题。大样本即可假定扰动项服从正态分布。而对于(2),(3)两条,则无法论证其合理性。实际问题中,这两条不成立的情况比比皆是。下面将讨论它们不成立的情况,即异方差性和自相关的情形。第三节 异方差性 回顾我们应用OLS法所需假设条件,其中大部分是有关扰动项的统计假设,它们是:现在学习的是第42页,共104页一 异方差性及其后果1 定义 若Var(ut)=常数的假设不成立,即 Var(ut)=常数,则称扰动项具有异方差性。22t2 什么情况下可能发生异方差性问题?解释变量取值变动幅度大时,常数方差的假设往往难以成立。异方差性主要发生在横

24、截面数据的情况,时间序列问题中一般不会发生,除非时间跨度过大。现在学习的是第43页,共104页例:Yi=+Xi+ui 其中:Y=指定规模和组成的家庭每月消费支出 X=这样的家庭的每月可支配收入 设X的N个观测值取自一个家庭可支配收入的横截面样本。某些家庭接近于勉强维持生存的水平,另一些家庭则有很高的收入。不难设想,低收入家庭的消费支出不大可能离开他们的均值E(Y)过远,太高无法支持,太低则消费将处于维持生存的水平之下。因此,低收入家庭消费支出额的波动应当较小,因而扰动项具有较小的方差。而高收入家庭则没有这种限制,其扰动项可能有大得多的方差。这就意味着异方差性。现在学习的是第44页,共104页

25、3异方差性的后果(1)参数估计量不再具有最小方差的性质 异方差性不破坏OLS估计量的无偏性,但不再是有效的。事实上,异方差性的存在导致OLS估计量既不是有效的,也不具有渐近有效性。(2)系数的显著性检验失去意义 更为严重的是,在异方差性的情况下,矩阵主对角元素不再是OLS估计量方差的无偏估计量,从而导致系数的置信区间和假设检验结果不可信赖。21)(XX现在学习的是第45页,共104页二 异方差性的检验 异方差性后果的严重性意味着我们在实践中必须了解是否存在异方差性。常用的检验方法有:斯皮尔曼等级相关检验法(Spearman Rank Relation test)戈德弗尔德匡特检验法(Goldf

26、eld Quandt test)格里瑟检验法(Glesjer test)帕克检验法(Park test)怀特检验法 (Whites General Heteroscedasticity test)布鲁奇帕根检验法(Breusch-Pagan Test)现在学习的是第46页,共104页1斯皮尔曼等级相关检验法 思路:将异方差性与扰动项u和某个解释变量X之间的相关程度挂钩(即 与 Xt 的大小有关),从而将对异方差性的研究转化为对ut与Xt的相关程度的研究。由于扰动项无法观测,因而用残差代替之,转化为对et与Xt的相关程度的研究,若et与Xt高度相关,则可推断异方差性存在。2t现在学习的是第47页

27、,共104页 问题是,在此无法用常规相关系数来检验,因为et与Xt的相关系数恒等于0:0)()()()()(2222eeXXxeeXeXeeXXeeXXrtttt因而改用Xt和et的等级相关系数检验et和Xt的相关程度。现在学习的是第48页,共104页等级相关系数的计算步骤(1)将两变量的相应观测值分别按升序(或降序)排序,所得到的序号即为等级;(2)计算两变量各观测值相应的等级之差dt;(3)计算等级相关系数 )12(261nntdr现在学习的是第49页,共104页例:等级相关系数的计算 假设我们有Xt和et如下:Xt 25,40,52,58,65 et 1.6,-2.9,-10.7,14.

28、8,5.7我们有 et 1.6,2.9,10.7,14.8,5.7 Xt的等级 et的等级 dt 1 1 0 2 2 0 3 4 -1 4 5 -1 5 3 2 r=1 (6*6)/(5*24)=1-0.3=0.7 现在学习的是第50页,共104页 计算出等级相关系数后,就可判断异方差性是否存在。若相关系数绝对值高,则存在异方差性。对于多个解释变量的情况,可分别计算et与各解释变量的等级相关系数进行检验。现在学习的是第51页,共104页2.戈德弗尔德匡特检验法基本思路:假定 随Yt的数值大小变动。检验步骤:(1)将数据分为三组:小Yt值组,中Yt值组,大Yt值组(数据项大致相等)(2)对小Yt

29、值组估计模型,给出 (3)对大Yt值组估计模型,给出 2t11221kne13223kne现在学习的是第52页,共104页 (4)H0:H1:(或 )检验统计量为F0 =F(n3-k-1,n1-k-1)若F0Fc,则拒绝H0,存在异方差性。2321232123212123现在学习的是第53页,共104页例:S=+Y+u 其中:S=储蓄 Y=收入 设 195160年,=0.01625 197079年,=0.9725 F0=0.9725/0.01625=59.9 查表得:d.f.为(8,8)时,5%Fc=3.44 F0Fc 因而拒绝H0。结论:存在异方差性。2123现在学习的是第54页,共104页

30、3.怀特检验(Whites General Heteroscedasticity Test)怀特提出的检验异方差性的方法在实践中用起来很方便,下面用一个三变量线性模型扼要说明其检验步骤。设模型如下:White检验步骤如下:(1)用OLS法估计(1)式,得到残差e i;(2)进行如下辅助回归01122(1)iiiiYXXu222011223344512(2)iiiiiiiieXXXXX Xv即残差平方对所有原始变量、变量平方以及变量交叉积回归,得到R2值;现在学习的是第55页,共104页(3)进行假设检验 原假设 H0:不存在异方差性(即方程(2)全部 斜率系数均为零)备择假设 H1:存在异方差

31、性(即H0不成立)怀特证明了下面的命题:在 原假设 H0成立的情况下,从(2)式得到的R2值与观测值数目(n)的乘积(n R2)服从自由度为 k的2分布,自由度 k 为(2)式中解释变量的个数。即 n R2 2(k)因此,怀特检验的检验统计量就是n R2,其抽样分布为自由度为k的2分布。检验步骤类似于t检验和F检验。现在学习的是第56页,共104页三 广义最小二乘法1消除异方差性的思路 基本思路:变换原模型,使经过变换后的模型具有同方差性,然后再用OLS法进行估计。对于模型 Yt=0+1X1t+k Xkt+ut (1)若扰动项满足 E(ut)=0,E(uiuj)=0,ij,但 E(ut2)=t

32、2 常数.也就是说,该模型只有同方差性这一条件不满足,则只要能将具有异方差性的扰动项的方差表示成如下形式:222()1,2,.tttVar utn 现在学习的是第57页,共104页 由于所以变换后的扰动项的方差为常数,可以应用OLS法进行估计,得到的参数估计量为BLUE。但这里得到的OLS估计量是变模后模型(2)的OLS估计量。对于原模型而言,它已不是OLS估计量,称为广义最小二乘估计量(称为广义最小二乘估计量(GLS估计估计量)。量)。011.(2)ttKttKtttttYXXu222221)(1)(ttttttuVaruVar 其中 为一未知常数,表示一组已知数值,则用t去除模型各项,得变

33、换模型:22t现在学习的是第58页,共104页2 广义最小二乘法广义最小二乘法(Generalized least squares)下面用矩阵形式的模型来推导出GLS估计量的一般计算公式。设GLS模型为 Y=X+u (1)满足 E(u)=0,E(uu)=2,X 非随机,X的秩=K+1n,其中为正定矩阵。现在学习的是第59页,共104页 根据矩阵代数知识可知,对于任一正定矩阵,存在着一个满秩(非退化,非奇异)矩阵P,使得111)(,PPPPuPXPYP111用P-1左乘原模型(1)(对原模型进行变换):令 Y*=P-1Y,X*=P-1X,u*=P-1u,得到 Y*=X*+u*(2)下面的问题是,

34、模型(2)的扰动项u*是否 满足OLS法的基本假设条件。现在学习的是第60页,共104页)()(11*PuuPEuuE)(11PuuEP)(121PP)(112PPPP)(112PPPPI2我们有现在学习的是第61页,共104页这表明,模型(2)中的扰动项u*满足OLS法的基本假设,可直接用OLS估计,估计量向量*1*)(YXXXYPPXXPPX11111)()(YXXX111)(这就是广义最小二乘估计量(GLS估计量)的公式,该估计量是BLUE。从上述证明过程可知,我们可将GLS法应用于为任意正定矩阵的情形。现在学习的是第62页,共104页如果只存在异方差性,则2)(uuE222212.00

35、0.0.000.00nntt,.,2,1,02PPn.000.0.000.0021其中我们显然有现在学习的是第63页,共104页)(1.000.0.0100.0011211PPn2222111.000.0.0100.001n现在学习的是第64页,共104页四 广义最小二乘法的应用1根据实际问题确定矩阵 应用GLS法的关键是确定矩阵。对于仅存在异方差性的实际问题,矩阵是一个对角矩阵,即 现在的问题是,的值为已知这一假设是否现实,也就是我们能否根据实际问题,提出有关扰动项方差的某种合理的设想(即估计矩阵),使得 (为未知常数,为已知数值)22221.000.0.000.00n2t2t222tt2现

36、在学习的是第65页,共104页例1 Yt=1+2Xt+ut t=1,2,n.其中 Y=家庭消费支出 X=家庭可支配收入 我们在前面已分析过,高收入家庭有较大的扰动项方差,因此不妨假定扰动项方差与可支配收入成正比,即 Var(ut)=Xt ,t=1,2,n.式中是一未知常数,由于Xt为已知,相当于 ,而相当于 ,因此 应用GLS法,即可得出的GLS估计量。nXXX.000.0.000.00212t2现在学习的是第66页,共104页2格里瑟检验法(Glesjer test)在上例中我们假设扰动项方差与解释变量的取值成正比,这种假设是否真正合理呢?根据经验和分析做出的这种假设,虽然有一定道理,但未免

37、显得过于武断,这方面还可做一些比较细致的工作。Glesjer检验法不仅可检验异方差性的存在,还可用于提供有关异方差形式的进一步信息,对于确定矩阵很有用,下面我们扼要说明格里瑟检验法的思路和步骤。现在学习的是第67页,共104页格里瑟检验法的思路 格里瑟检验法的思路是假定扰动项方差与解释变量之间存在幂次关系,方法是用 对被认为与扰动项方差有关的解释变量回归,确定 和该解释变量的关系。由于与该解释变量之间关系的实际形式是未知的,因此需要用该解释变量的不同幂次进行试验,选择出最佳拟合形式。具体步骤如下:tete现在学习的是第68页,共104页(1)因变量Y对所有解释变量回归,计算残差et (t=1,

38、2,n)(2)对所选择解释变量的各种幂次形式回归,如 然后利用决定系数,选择拟合最佳的函数形式。(3)对1进行显著性检验,若显著异于0,则表明存在异方差性,否则再试其它形式。.1101010210tjtttjtttjtttjttuXeuXeuXeuXete现在学习的是第69页,共104页 例2 Yt=1+2X1t+k Xkt+ut 假设我们根据经验知道扰动项方差与Xjt有关,并用格里瑟法试验,得出:则 jttX2jnjjXXX.000.0.000.0021现在学习的是第70页,共104页3加权最小二乘法加权最小二乘法 对于仅存在异方差性的问题,其矩阵是一个对角矩阵,即 在这种情况下应用广义最小

39、二乘法,也就是在原模型两端左乘矩阵22221nnP1.11211变换原模型,再对变换后的模型应用普通最小二乘法进行估计。现在学习的是第71页,共104页这种作法实际上等价于在代数形式的原模型 Yt=0+1X1 t+k X k t+u t 的两端除以 t,得变换模型:tttKtKtttttuXXY110相当于在回归中给因变量和解释变量的每个观测值都赋予一个与相应扰动项的方差相联系的权数 ,然后再对这些变换后的数据进行OLS回归,因而被称为加权最小二乘法(WLS法,Weighted Least Squares)。),.,2,1,1(ntt现在学习的是第72页,共104页 加权最小二乘法是广义最小二

40、乘法的一个特例,在矩阵为对角矩阵这种特殊情形下,我们既可以直接应用矩阵形式的广义最小二乘估计量公式得到GLS估计值,亦可避开矩阵运算,采用加权最小二乘法得到其WLS估计值,两者结果完全相同,无论你称之为GLS估计值还是WLS估计值,二者是一码事。例例:其中:Y=R&D支出,X=销售额 采用美国1988年18个行业的数据估计上述方程,结果如下(括号中数字为t值):12(1)iiiYXu现在学习的是第73页,共104页 这里是横截面数据,由于行业之间的差别,可能存在异方差性。)8434.3()1948.0(4783.00319.099.1922RXYii 假设 应用格里瑟法试验,得到异方差性形式为

41、:iiX2将原模型(1)的两端除以 ,得iX)2(121iiiiiiXuXXXY现在学习的是第74页,共104页 用OLS法估计(2)式,结果如下(括号中数字为t值):与(1)式的结果比较,两个方程斜率系数的估计值相差不大,但采用WLS法估计的比直接用OLS法估计的系数更为显著,这表明OLS法高估了X系数的标准差。21246.680.03680.6258(0.647)(5.172)iiiiYXRXX 现在学习的是第75页,共104页第四节 自相关一 定义若Cov(ui,uj)=E(uiuj)=0,ij不成立,即线性回归模型扰动项的方差协方差矩阵的非主对角线元素不全为0,则称为扰动项自相关,或序

42、列相关(Serial Correlation)。二 自相关的原因及后果1原因自相关主要发生在时间序列数据的情形,因而亦称为序列相关,主要有以下两种原因:现在学习的是第76页,共104页(1)冲击的延期影响(惯性)在时间序列数据的情况下,随机冲击(扰动)的影响往往持续不止一个时期。例如,地震、洪水、罢工或战争等将在发生期的后续若干期中影响经济运行。微观经济中也与此类似,如一个工厂的产量,由于某种外部偶然因素的影响(如某种原材料的供应出了问题),该厂某周产量低于正常水平,那么,随后的一周或几周中,由于这种影响的存在或延续,产量也很可能低于正常水平(即扰动项为负)。不难看出,观测的周期越长,这种延期

43、影响的严重性就越小,因此,年度数据比起季度数据来,序列相关成为一个问题可能性要小。现在学习的是第77页,共104页 (2)误设定 如果忽略了一个有关的解释变量,而该变量是自相关的,则将使扰动项自相关,不正确的函数形式也将导致同样后果。在这些情况下,解决的方法是纠正误设定。本章后面将介绍的纠正自相关的方法都不适用于这种情况的自相关。现在学习的是第78页,共104页2后果 自相关的后果与异方差性类似。(1)在扰动项自相关的情况下,尽管OLS估计量 仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(2)OLS估计量的标准误差不再是真实标准误差 的无偏估计量,使得在自相关的情况下,无法 再信

44、赖回归参数的置信区间或假设检验的结果。现在学习的是第79页,共104页三 自相关的检验1检验一阶自相关的德宾沃森检验法(DurbinWatson test)(1)一阶自相关 自相关的最简单模式为:其中称为自相关系数(-11),这种扰动项的自相关称为一阶自相关,即扰动项仅与其前一期的值有关。0 正自相关 0 负自相关 =0 无自相关11,2,.,tttuutn现在学习的是第80页,共104页 在一阶自相关模式中,假定t具有以下性质:E(t)=0,E(t)=2=常数,E(ij)=0,ij,t服从正态分布。在计量经济学中,具备上述性质的量称为白噪声(White noise),表示为 t=White

45、noise 或 t=白噪声现在学习的是第81页,共104页(2)德宾沃森检验法(DurbinWatson d test)统计软件包和研究报告在提供回归结果时通常都给出DW(或d)统计量的值,该统计量是从OLS回归的残差中计算得来的,它被用于一阶自相关的检验,计算公式为:nttnttteeeDW12221)(现在学习的是第82页,共104页 DW和一阶自相关系数的估计值之间存在以下近似关系(具体推导过程见书上P135136):DW 2-2 由于-1 1,因而0 DW 4。不难看出,直观判断准则是,当DW统计量接近2时,则无自相关,DW值离2越远,则自相关存在的可能性越大。现在学习的是第83页,共

46、104页DW检验的缺陷 我们当然期望有一张能够给出相应的n、k和值下各种DW临界值的表(就象t检验,F检验一样),使得我们可以按常规假设检验那样根据临界值作出判断。不幸的是,DW统计量的分布依赖于解释变量的具体观测值(即依赖于X矩阵)。因此不象t、F检验那样,有一张能够给出DW临界值的表。为解决这一问题,德宾和沃森证明,DW统计量的真实分布位于两个极限分布之间,这两个分布分别称为下分布和上分布,如下图所示:现在学习的是第84页,共104页概率密度 下分布 上分布 0 A B C D DW值 每个分布的95%临界水平用A,B,C,D表示。现在学习的是第85页,共104页 现假设DW统计量的值位于

47、A的左边,则不管这种情况下的DW统计量服从何种分布(上,下或中间),无自相关的原假设将被拒绝。与此类似,若DW统计量的值位于D的右边,则亦可拒绝无自相关的原假设。若DW统计量的值位于B和C之间,则可接受原假设。而当DW统计量的值位于A和B之间或C和D之间时,则无法得出结论。上述分析可以概括为:DWD 存在自相关 BDWC 无自相关 ADWB或CDW2,则令DW=4-DW,按上述准则进行判。若DW2现在学习的是第89页,共104页 例:DW=3.5,则 DW=4-3.5=0.5 查表(n=30,k=2,=5%)得:dL=1.28 DW=0.5 1.28 结论:存在自相关。现在学习的是第90页,共

48、104页 2其它检验自相关的方法 DW检验法只能检验一阶自相关,并且,如果方程中包括滞后因变量(如Yt-1,Yt-2等)时,用DW法检验容易产生偏差。因此,在碰到较复杂的情形,我们应采用一些其它检验自相关的方法。下面列出几种方法及其适用环境。检验方法 适用环境Durbin-Watson d检验法 一阶自相关,方程中无Y的滞后项Durbins h 检验法 一阶自相关,方程中有Yt-1Box-Pierce检验法 一般自相关(一阶、二阶、K阶)LM检验法 一般自相关(一阶、二阶、K阶)现在学习的是第91页,共104页*3.高阶自相关的检验:高阶自相关的检验:LM检验法检验法 为解决DW检验存在的缺陷

49、,布鲁奇(T.S.Breusch)和戈弗雷(L.G.Godfrey)在上世纪七十年代末期提出了检验一般自相关的方法:布鲁奇-戈弗雷法,由于该方法源自拉格朗日乘数原理,因此通常被称为拉格朗日乘数法(LM法)。考虑回归模型11122:1,2,.:.ktitititttpt pttAYXutnBuuuu白噪声A式中诸X也可以包括滞后因变量。现在学习的是第92页,共104页我们要检验的是:,即扰动项不存在任何阶数的自相关。LM检验步骤如下:(1)用OLS法估计A式,得到最小二乘残差;(2)然后估计下面的方程:计算常规F统计值,012:.0pH111,2,.(3)pktitit iitiieXetn现在

50、学习的是第93页,共104页(3)检验是否所有 的系数都等于0。这里通常不用F检验而用 检验,因为LM检验是大样本检验。检验统计量为 ,该统计量服从自由度为P的 分布,即LM检验的缺点是,滞后长度P不能先验地确定,需要反复试,可以考虑用赤池和施瓦茨信息准则来选择滞后长度。t ie2P F22()P FP现在学习的是第94页,共104页四 消除自相关的方法 1一阶自相关 如果实际问题的自相关模式为一阶自相关,则只要知道,就可以完全消除自相关,下面用双变量模型来说明,但同样的原理适用于多个解释变量的情形。设 Yt=+Xt+ut (1)ut=ut-1+t 其中t是白噪声,且0。(1)式两端取一期滞后

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁