《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题测评试卷.docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题测评试卷.docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD2、已知点关于原点的
2、对称点在一次函数的图象上,则实数的值为( )A1B-1C-2D23、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个4、如图,RtABC中,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)5、如图,把含30的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F
3、,若AF8,则AB的长为()A4B4C4D66、下列各组图形中,能够通过平移得到的一组是( )ABCD7、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)8、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD9、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )Am=3,n=2Bm=,n=2Cm=2,n=3Dm=,n=10、如图,将OAB绕点O逆时针旋转70到OCD的位置,若AOB40,则AOD的度数等于( )A29B30C31D32第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边
4、三角形ABC中,AB2,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),将BMN沿直线MN折叠,若点B的对应点B恰好落在等边三角形ABC的边上,则BN的长为_2、在平面直角坐标系中,将点P(3,1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _3、如图,在矩形中,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,则的长是 _4、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _5、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B
5、在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C22、已知点A(1,1),B(1,4),C(3,1)(1)请在如图所示的平面直角坐标系
6、中(每个小正方形的边长都为1)画出ABC;(2)作ABC关于x轴对称的DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出CEF的面积3、如图,在平面直角坐标系中,已知点A(1,5),B(3,1)和C(4,0)(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,画出线段MN并写出点M的坐标;直接写出线段MN与线段CD的位置关系4、如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位
7、长度的正方形,四边形ABCD的顶点均落在格点上(1)在图中画出四边形ABCD关于x轴对称的四边形A1B1C1D1;(2)在(1)的条件下,分别写出点A、D的对应点A1、D1的坐标5、在平面直角坐标系xOy中,点P为一定点,点P和图形W的“旋转中点”定义如下:点Q是图形W上任意一点,将点Q绕原点顺时针旋转90,得到点,点M为线段的中点,则称点M为点P关于图形W的“旋转中点”(1)如图1,已知点,在点,中,点 是点A关于线段BC的“旋转中点”;求点A关于线段BC的“旋转中点”的横坐标m的取值范围;(2)已知,点,且D的半径为2若的内部(不包括边界)存在点G关于D的“旋转中点”,求出t的取值范围-参
8、考答案-一、单选题1、D【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键2、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值3、C【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是
9、相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关键4、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点
10、,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线5、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含30的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键
11、6、B【分析】根据平移的性质对各选项进行判断【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键7、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形8、C【详解】
12、解:选项A中的图形是轴对称图形,不是中心对称图形,故A不符合题意;选项B中的图形既不是轴对称图形,也不是中心对称图形,故B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,轴对称图形的定义:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形的定义:把一个图形绕某点旋转后能够与自身完全重合;掌握定义是解本题的关键.9、B【分析】由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.【详解】解:点A(m,2)与点B(3,n)关于y轴对
13、称,纵坐标相同,横坐标互为相反数m=-3,n=2故答案为:B【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键10、B【分析】由旋转的性质可得DOB=70,即可求解【详解】解:将OAB绕点O逆时针旋转70到OCD,DOB=70,AOB=40,AOD=BOD-AOB=30,故选:B【点睛】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键二、填空题1、或【分析】如图1,当点B关于直线MN的对称点B恰好落在等边三角形ABC的边AB上时,于是得到MNAB,BNBN,根据等边三角形的性质得到ACBC,ABC60,根据线段中点的定义和30角直角三角形的性质得到BNBM,如
14、图2,当点B关于直线MN的对称点B恰好落在等边三角形ABC的边AC上时,则MNBB,四边形BMBN是菱形,根据线段中点的定义即可得到结论【详解】解:如图1,当点B关于直线MN的对称点B恰好落在等边三角形ABC的边AB上时,则MNAB,BNBN,ABC是等边三角形,ABACBC,ABC60,点M为边BC的中点, BMBCAB,在直角三角形BMN中,BNBM;如图2,当点B关于直线MN的对称点B恰好落在等边三角形ABC的边AC上时,则MNBB,三角形是等边三角形,四边形BMBN是平行四边形,又,平行四边形BMBN是菱形,ABC60,点M为边BC的中点,BNBMBCAB,故答案为:或【点睛】本题考查
15、了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键2、【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案【详解】将点向上平移5个单位长度得到点,点M关于原点对称的点的坐标是,故答案为:【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键3、4【分析】根据矩形的性质和旋转性质得出BH=AB=5,C=90,再根据勾股定理求解即可【详解】解:由题意知:,C=90,在RtBCH中,BC=3,故答案为:4【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键4、【分析】
16、根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解5、【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键三、解答题1、(1)(4,1);(2)见解析;(3
17、)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点2、(1)作图见详解;(2)作图见详解;(3)的面积为2【分析】(1)直接在坐标系中
18、描点,然后依次连线即可;(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可【详解】解:(1)如图所示,即为所求;(2)A、B、C三点关于x轴对称的点的坐标分别为:,然后描点、连线,即为所求;(3)由图可得:SCEF=1222=2,的面积为2【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键3、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)作图见解析,点M的坐标为(1,-5);MNCD【分析】(1)根据点A平移到点C,即可得
19、到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90,即可画出旋转后所得的线段AE;(3)分别作出A,B的对应点M,N,连接即可;由平行线的传递性可得答案【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)如图所示,线段MN即为所求,点M的坐标为(1,-5);线段MN与线段AB关于原点成中心对称,MNAB,线段CD是由线段AB平移得到的,CDAB,MNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题4、(1)见解析;(2)A
20、1(3,5)、D1(3,4)【分析】(1)分别作出四个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,四边形A1B1C1D1即为所求(2)A1(3,5)、D1(3,4)【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义与性质5、(1)点为点A关于线段的“旋转中点”;(2)t的取值范围或【分析】(1)分别假设点为点A关于线段的“旋转中点”,求出点(旋转之前的点),查看点是否在线段即可;设点A关于线段的“旋转中点”的坐标为,按照题意,逆向思维找到点,根据点在线段上,求解即可;(2)设旋转中点的坐标为,则应满足,找到点,线段的中点为,
21、再将点逆时针旋转,得到点,点应该在使得点在的内部(不包括边界),求解即可【详解】解:(1)假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点在线段上,符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;综上所得,点为点A关于线段的“旋转中点”,设点A关于线段的“旋转中点”的坐标为,则
22、点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在线段上,即,解得;(2)设的内部(不包括边界)存在点G关于D的“旋转中点”,为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在D上, 即,解得,02n+t2或-22n+t0,或,设EF解析式为把坐标代入得,解得,EF解析式为,由题意可得:点在的内部(不包括边界),0n2,又,解得, ,t的取值范围或【点睛】此题考查了坐标系点坐标的旋转变换,涉及了不等式组的求解,新概念的理解,解题的关键是理解点P和图形W“旋转中点”的概念,并掌握点绕原点顺时针或逆时针旋转后的坐标公式绕原点旋转的坐标公式:点绕原点顺时针转后坐标为,逆时针转旋转坐标为