《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换达标测试试卷.docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换达标测试试卷.docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点
2、O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)2、如图,直角三角形纸片ABC中,ACB=90,A=50,将其沿边AB上的中线CE折叠,使点A落在点处,则EB的度数为( )A10B15C20D403、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D124、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180
3、B120C90D605、如图,在ABC中,BAC108,将ABC绕点A按逆时针方向旋转得到,若点刚好落在BC边上,且,则C的度数为()A22B24C26D286、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD7、已知半圆O的直径AB8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m()Am4Bm4C4m4D4m48、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )ABCD9、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标
4、为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)10、在平面直角坐标系中,点,关于轴对称点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方形ABCD中,AB2,A是以A为圆心,1为半径的圆,若A绕点B顺时针旋转,旋转角为(0180),则当旋转后的圆与正方形ABCD的边相切时,_2、如图,把ABC绕点C顺时针旋转某个角度得到,A30,170,则旋转角的度数为_3、当一个图形在旋转中第一次与自身重合时,我们称此图形转过的角度为旋转对称角,如图,图、图、图按旋转对称角从小到大的顺序排列是_(
5、用“”连接)4、如图,四边形ABCD中,ADBC,直线l是它的对称轴,B=53,则D的大小为_5、如图,RtABC,ACB90,ACBC3,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD2,连接AF,BD,在正方形CDEF旋转过程中,BD+AD的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知ABC(1)将ABC向下平移6个单位,得,画出;(2)画出ABC关于y轴的对称图形;(3)连接,并直接写出A1A2C2的面积2、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(1,0),B(2,-3),
6、C(4,-2)(1)画出ABC关于x轴的对称图形A1B1C1;(2)画出A1B1C1向左平移3个单位长度后得到的A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是_3、如图,已知点A(-2,4),B(4,2),C(2,-1)(1)先画出ABC,再作出ABC关于x轴对称的图形,则点的坐标为_;(2)P为x轴上一动点,请在图中画出使PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹)4、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕
7、过的面积5、如图,在平面直角坐标系中,点A(-m,m)(m0)在反比例函数(x0)的图象上,矩形ABCD与坐标轴的交点分别为H,E,F,G,ABy轴连接AE,AF,分别交坐标轴于点M,N,连接MN(1)猜想:EAF的度数是定值吗?若是,请求出度数;若不是,请说明理由;(2)若M为OH的中点,求tanANM-参考答案-一、单选题1、D【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的
8、性质得到线段的比例是解题关键2、C【分析】由折叠的性质和直角三角形斜边的中线等于斜边的一半,则,然后结合三角形的内角和,等腰三角形的性质,即可求出答案【详解】解:ABC是直角三角形,CE是中线,有折叠的性质,则,A=50,ACE=50,;故选:C【点睛】本题考查了折叠的性质,三角形的内角和定理,直角三角形的性质,三角形的外角性质,解题的关键是掌握所学的知识,正确的求出角的度数3、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】
9、本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型4、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质5、B【分析】根据图形的旋转性质,得ABAB,已知ABCB,结合等腰三角形的性质及三角形的外角性质,得B、C的关系即可解决问题【详解】解:ABCB,CCAB,ABBC+CAB2C,将ABC绕点A按逆时
10、针方向旋转得到ABC,CC,ABAB,BABB2C,B+C+CAB180,3C180108,C24,故选:B【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得B、C的关系为解决问题的关键6、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称
11、轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合7、D【分析】根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,根据折叠的性质可得,又则四边形是菱形,且设,则则当取得最大值时,取得最小值,即取得最小值,当取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形则此时当点与点重合时,此时最小,则即则故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键8、A【分析】根据题意直
12、接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案【详解】解:点P(,)和点Q(,)关于轴对称,故选:A.【点睛】本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.9、C【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90,AECAFC,故
13、选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题10、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容二、填空题1、30,60或120【分析】根据题意得,可分三种情况讨论:当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切;当
14、旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切;当旋转后的圆 与正方形ABCD的边BC相切时,即可求解【详解】正方形ABCD中AB=2,圆A是以A为圆心,1为半径的圆,当圆A绕点B顺时针旋转(0180)过程中,圆A与正方形ABCD的边相切时,可分三种情况讨论:如图1,当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切,设圆 与正方形ABCD的边AB相切于点E,连接E,B,则在RtEB中,E=1,B=2, ,BE=30,即=30;如图2,当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切,设圆与正方形ABCD的边BC相切于点F,连接F,B,则 ,在 中, ,BF=30
15、,=BA=ABC-BF =60;如图3,当旋转后的圆 与正方形ABCD的边BC相切时, 设切点为G,连接 ,则 ,在 中, ,BG=30,=BA=ABC+BG=120综上,旋转角=30,60或120故答案为:30,60或120【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键2、#【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30, 170, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.3、【分析】分别求
16、出三个图形的旋转角即可得到答案【详解】解:由题意得:第一个图形的旋转角,第个图形的旋转角,第三个图形的旋转角,旋转对称角从小到大排列为:,故答案为:【点睛】本题主要考查了旋转角,解题的关键在于能够根据题意求出每一个图形的旋转角4、127【分析】根据轴对称性质得出C=B=53,根据平行线性质得出C+D=180即可【详解】解:直线l是四边形ABCD的对称轴,B=53,C=B=53,ADBC,C+D=180,D=180-53=127故答案为:127【点睛】本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角5、#【分析】在AC上截取一点M,使得CM=利用相似
17、三角形的性质证明DM=AD,推出BD+AD=BD+DM,推出当B,D,M共线时,BD+AD的值最小,即可解决问题;【详解】解:如图,在AC上截取一点M,使得CM=连接DM,BM CD=2,CM=,CA=3,CD2=CMCA,DCM=ACD,DCMACD,DM=AD,BD+AD=BD+DM,当B,D,M共线时,BD+AD的值最小,最小值=故答案为:【点睛】本题考查正方形的性质、相似三角形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会由转化的思想思考问题三、解答题1、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到;(2)依据轴对称的性质,
18、即可得到;(3)依据割补法进行计算,即可得到A1A2C2的面积【详解】(1)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,A1A2C2即为所求作的三角形,A1A2C2的面积36232614183627【点睛】本题考查作图平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形2、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)【分析】(1)直接利用关于轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接
19、利用平移变换的性质得出点的坐标【详解】解:(1)如图所示:就是所要求作的图形;(2)如图所示:就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:故答案为:【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键3、(1)作图见解析,(2,1);(2)作图见解析,(2,0)【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为;根据轴对称的性质找到A、B、C三点关于x轴的对应点、,再顺次连接,即为,最后写出的坐标即可(2)根据轴对称的性质结合两点之间线段最短,即可直接连接,即与x
20、轴的交点为点P,再直接写出点P坐标即可【详解】(1)和如图所示,根据图可知故答案为:(2,1)(2)AB长度不变,的周长,只要最小即可如图,连结交x轴于点P,两点之间线段最短,设解析式为,过(-2,-4),B(4,2),代入得, 解得:,的解析式为,当时,即,解得:点P坐标为 (2,0)当点P坐标为(2,0)时,周长最短【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质4、(1)见解析;(2)旋转角为 60或者 300;(3)9【分析】(1)由旋转的性质及等腰三角形性质得AEBABE,由AEFBAD可得EAFABD,从而有AEBEAF,故
21、由平行线的判定即可得到结论;(2)分点G在AD的右侧和AD的左侧两种情况;均可证明GAD是等边三角形,从而问题解决;(3)由S阴影S扇形ACFS扇形ADG,分别计算出两个扇形的面积即可求得阴影部分面积【详解】(1)连接AF,由旋转可得,AEAB,EF=BC,AEF=ABC=90AEBABE,又四边形ABCD是矩形ABC=BAD=90,BC=ADEF=AD,AEF=BAD=90在AEF和BAD中 AEFBAD(SAS),EAFABD,AEBEAF,AFBD (2)如图,当GBGC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHB
22、C,四边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60,旋转角60; 当点G在AD左侧时,同理可得ADG是等边三角形,DAG60,旋转角36060300 旋转角为 60或者 300(3)如图3,S扇形ACF25,S扇形ADG16,S阴影S扇形ACFS扇形ADG25169即阴影部分的面积为【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定与性质,扇形面积,线段垂直平分线的判定等知识,涉及的知识点较多,灵活运用这些知识是解题的关键,(2)小问注意分类讨论5、(1)是定值,EAF=45;(2)3【分析】(1)连接AO,由点的坐标可得四边形A
23、HOG为正方形,然后利用勾股定理得出,根据点C所在的反比例函数解析式可得:,利用等量代换得出:,根据相似三角形的判定和性质可得:,结合图形,由各角之间的数量关系即可得出结果;(2)OH的延长线上取点P,使得,连接AP,用正方形半角模型得,设正方形AHOG的边长为2a,即可得出各边长,然后利用勾股定理得出,根据正切函数的性质求解即可【详解】解:(1)证明:如图,连接AO,点,四边形AHOG为正方形,根据点C所在的反比例函数解析式可得:,又,为定值;(2)解:如图,在OH的延长线上取点P,使得,连接AP,利用正方形半角模型即:将AGN旋转到APH位置,得,设正方形AHOG的边长为2a,则,设,则,由勾股定理得,即:,得,【点睛】题目主要考查反比例函数图象与图形的结合问题,包括正方形的判定和性质,相似三角形的判定和性质,图形的旋转,正切函数等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键