《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换必考点解析试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换必考点解析试卷(无超纲).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则
2、CC()A10B2C2D42、如图,直角三角形纸片ABC中,ACB=90,A=50,将其沿边AB上的中线CE折叠,使点A落在点处,则EB的度数为( )A10B15C20D403、如图,线段两个端点的坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为( )ABCD4、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)5、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD6、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C1
3、0D127、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A%BCD8、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90得到点D的坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)9、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD10、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保
4、护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD中,ADBC,直线l是它的对称轴,B=53,则D的大小为_2、已知点A(a,1)与点B(3,b)关于x轴对称,则ab_3、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_4、如图,ABC的顶点A
5、,B分别在x轴,y轴上,ABC90,OAOB1,BC2,将ABC绕点O顺时针旋转,每次旋转90,则第2021次旋转结束时,点C的坐标为 _5、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图1,在ABC中,ABAC2,BAC120,点D、E分别是AC、BC的中点,连接DE(1)探索发现:图1中,的值为 ,的值为 (2)拓展探究若将CDE绕点C旋转,在旋转过程中的大小有无变化?请仅就图2的情形给出证明(3)问题解决当CDE旋转至A,D,C三点共线时,直接写出线段BE的长2、如图所示,在平面直角坐标系中,已知,(1)在
6、平面直角坐标系中画出,并求出的面积;(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)(3)已知为轴上一点,若的面积为4,求点的坐标3、如图,ABC是等边三角形,点D在AC边上,将BCD绕点C旋转得到ACE(1)求证:DEBC;(2)若AB8,BD7,求ADE的周长4、如图,在等腰中,点D在线段BC的延长线上,连接AD ,将线段AD绕点A逆时针旋转90得到线段AE,连接CE,射线BA与CE相交于点F(1)依题意补全图形;(2)用等式表示线段BD 与CE的数量关系,并证明;(3)若F为CE中点,则CE的长为_5、抛物线y
7、ax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标-参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,
8、AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键2、C【分析】由折叠的性质和直角三角形斜边的中线等于斜边的一半,则,然后结合三角形的内角和,等腰三角形的性质,即可求出答案【详解】解:ABC是直角三角形,CE是中线,有折叠的性质,则,A=50,ACE=50,;故选:C【点睛】本题考查了折叠的性质,三角形的内角和定理,直角三角形的性质,三角形的外角性质,解题的关键是掌握所学的知识,正确的求出角的度数3、A【分析】利用位似图形的性质结合两图形
9、的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键4、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键5、B【分析】根据轴对称
10、图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形6、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【
11、详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型7、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键8、C【分析】分顺时针和逆时针旋转90两种情况讨论,构造全等三角形即可求解【详解】解:设点D绕着点A逆时针旋转
12、90得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90,AD1=AD,AED1=ACD=90,D1+EAD1=90,EAD1 +DAC=90,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质
13、,根据平面直角坐标系确定出点D1和D2的位置是解题的关键9、D【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键10、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键二、填空题1、127【分析】根据轴对称性质
14、得出C=B=53,根据平行线性质得出C+D=180即可【详解】解:直线l是四边形ABCD的对称轴,B=53,C=B=53,ADBC,C+D=180,D=180-53=127故答案为:127【点睛】本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角2、2【分析】根据两点关于x轴对称得到a3,b1,代入计算即可【详解】解:点A(a,1)与点B(3,b)关于x轴对称,a3,b1,ab2故答案为:2【点睛】此题考查了轴对称的性质关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键3、 或【分析】(1)观察坐标系即可得点D坐标;(
15、2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心4、【分析】过点C作 轴于点D,根据 OAOB1,AOB=90,可得ABO=45,从而得到CBD=45,进而得到BD=CD=2,可得到点,再由将ABC绕点O顺时针旋转,第一次旋转90后,点,将ABC绕
16、点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解【详解】解:如图,过点C作 轴于点D,OAOB1,AOB=90,ABO=45,ABC90,CBD=45,BCD=45,BD=CD,BC2, ,BD=CD=2,OD=OB+BD=3,点,将ABC绕点O顺时针旋转,第一次旋转90后,点,将ABC绕点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O顺时针旋转
17、四次一个循环, ,第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键5、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键三、解答题1、(1),;(2)无变化,理由见解析;(3)或【分析】(1)连接,先根据等腰三角形的性质可得,再根据直角三角形的性质、勾股定理可得,然后根据线段中点的定义即可得;(2)先求出,从而可得,再根据旋转的性质可得,从而可得,然后根据相似三角形
18、的判定证出,最后根据相似三角形的性质即可得出结论;(3)分绕点逆时针旋转,绕点逆时针旋转两种情况,分别根据线段的和差即可得【详解】解:(1)如图,连接,点分别是的中点,故答案为:,;(2)无变化,理由如下:由(1)知,由旋转的性质得:,即,在和中,即的大小不变;(3)由题意,分以下两种情况:如图,当绕点逆时针旋转时,三点共线,由(1)知,则;如图,当绕点逆时针旋转时,三点共线,由(1)知,综上,线段的长为或【点睛】本题考查了等腰三角形的性质、含角的直角三角形的性质、旋转的性质、相似三角形的判定与性质等知识点,较难的是题(2),正确找出两个相似三角形是解题关键2、(1)见解析,4;(2)0,-2
19、,-2,-3,-4,0;(3)或【分析】(1)先画出ABC,然后再利用割补法求ABC得面积即可;(2)先作出,然后结合图形确定所求点的坐标即可;(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可【详解】解:(1)画出如图所示:的面积是:;(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)故填:0,-2,-2,-3,-4,0;(3)P为x轴上一点,的面积为4,当P在B的右侧时,横坐标为:当P在B的左侧时,横坐标为,故P点坐标为:或【点睛】本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键3、(1)见
20、解析;(2)15【分析】(1)根据旋转的性质可得,进而证明是等边三角形,进而可得,即可证明;(2)根据旋转的性质可得,又是等边三角形,则,即可求得ADE的周长等于【详解】(1)解:ABC是等边三角形,将BCD绕点C旋转得到ACE,是等边三角形;(2)将BCD绕点C旋转得到ACE,是等边三角形, AB8,BD7,ADE的周长等于【点睛】本题考查了旋转的性质,三角形全等的性质,等边三角形的性质,平行线的判定,掌握旋转的性质是解题的关键4、(1)见解析;(2),见解析;(3)4【分析】(1)根据题意补全图形即可;(2)根据题意易得,即可推出即可利用“SAS”证明,得出结论(3)由结合题意可推出,即证
21、明ACF是等腰直角三角形,从而得出,再由勾股定理可求出CF的长,最后根据点F为CE中点,即可求出CE的长【详解】解:(1)依题意补全图形如下: (2)用等式表示线段BD与CE的数量关系是:,证明: 根据题意可知ABC是等腰直角三角形,AD绕点A逆时针旋转90得到AE, ,即,在和中,(3),ABC是等腰直角三角形,ACF是等腰直角三角形,在中,点F为CE中点,【点睛】本题考查等腰直角三角形的判定和性质,旋转的性质,三角形全等的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键5、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法
22、求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45 ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,
23、0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90旋转角A1BAC1BC90,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90QCDECD45CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.