2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选).docx

上传人:知****量 文档编号:28162975 上传时间:2022-07-26 格式:DOCX 页数:29 大小:1.08MB
返回 下载 相关 举报
2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选).docx_第1页
第1页 / 共29页
2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD2、平面直角坐标系中,点P(,)和点Q(,)关于轴对称

2、,则的值是( )ABCD3、如图,边长为1的正方形ABCD绕点A逆时针旋转45后,得到正方形ABCD,边BC与DC交于点O,则DOB的度数为()A125B130C135D1404、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形5、如图,若绕点A按逆时针方向旋转40后与重合,则( ) A40B50C70D1006、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D507、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形8、如图,在

3、RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D49、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)10、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD中,AB3,BC2,E是BC中点,点F是线段AB上一个动点(1)连接DF,则DF+EF的最小值为 _;(2)以EF为斜边向斜上方作等腰RtEFG,点F从点B运动到点A的过程中,AG的最小值为 _2、在平面直

4、角坐标系中点M(2,4)关于原点对称的点的坐标为 _3、已知点与关于原点对称,则xy的值是_4、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是_5、已知点A(a1,5)与点B(3,b)关于x轴对称,则点C(a,b)关于y轴对称的点在第 _象限三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,C90,AD平分BAC交BC边于点D(1)请通过尺规作出一个点E,连接DE,使ADE与ADC关于AD对称;(保留痕迹,不写作法)(2)在(1)的条件下,若DE,EB,DB的长度是三个从小到大的连续正整数,求AD的

5、长2、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上(点M,N是格点)(1)画出线段AB绕点N顺时针旋转90得到的线段(点,分别为A,B的对应点);(2)在问题(1)的旋转过程中,求线段AB扫过的面积3、在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90得到EF,连接BF(1)如图1,点E在BC边上依题意补全图1;若AB6,EC2,求BF的长;(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系4、在平面直角坐标系xOy中,点P为一定点,点P和图

6、形W的“旋转中点”定义如下:点Q是图形W上任意一点,将点Q绕原点顺时针旋转90,得到点,点M为线段的中点,则称点M为点P关于图形W的“旋转中点”(1)如图1,已知点,在点,中,点 是点A关于线段BC的“旋转中点”;求点A关于线段BC的“旋转中点”的横坐标m的取值范围;(2)已知,点,且D的半径为2若的内部(不包括边界)存在点G关于D的“旋转中点”,求出t的取值范围5、如图,在中,将绕点B按逆时针方向旋转,得到,连接交于点F(1)求证:;(2)求的度数-参考答案-一、单选题1、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称

7、点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律2、A【分析】根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案【详解】解:点P(,)和点Q(,)关于轴对称,故选:A.【点睛】本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.3、C【分析】连接BC,根据题意得B在对角线AC上,得BCO=45,由旋转的性质证出OBC是直角,得,即可得出答案【详解】解:连接BC,如图所示,四边形ABCD是正方形,AC平分BAD,旋转角BAB=45,BAC=45,B在对角线AC上,BC

8、O=45,由旋转的性质得:,AB=AB=1, 故选:C【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键4、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题

9、意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键5、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键6、B【分析】先求出A=40,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=18

10、0-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算7、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠

11、,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180后与原图形完全重合,熟练掌握两种图形的定义是解题的关键8、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键9、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2

12、,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键10、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键二、填空题1、 #【分析】(1)作点E关于

13、AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,进而勾股定理求解即可(2)以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则,证明即可得点在线段上当时取得最小值,进而勾股定理即可求得的长【详解】解:(1)如图1,作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,在RtCDE中,CD3,CE3,DE3,故答案是:3;(2)如图,以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则是等腰直角三角形是的角平分线是等腰直角三角,又点在线段上当时取得最小值是等腰直角三角形故答

14、案是:【点睛】本题考查了勾股定理,等腰直角三角形的性质,角平分线的性质,正确的添加辅助线是解题的关键2、【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解【详解】解:点M(2,4)关于原点对称的点的坐标为 故答案为:【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键3、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案【详解】解:点与关于原点对称, 解得:,则xy的值是:-3故答案为:-3【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关

15、键4、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的

16、性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键5、四【分析】直接利用关于x,y轴对称点的性质得出a,b的值,进而得出答案【详解】解:点A(a1,5)与点B(3,b)关于x轴对称,a13,b5,解得:a2,b5,点C(a,b)为C(2,5),点C(a,b)关于y轴对称的点的坐标为(2,5),即点C(a,b)关于y轴对称的点在第四象限故答案为:四【点睛】本题考查了求关于坐标轴对称的点的坐标,判断点所在的象限,求得的值是解题的关键三、解答题1、(1)见解析;(2)【分析】(1)先以A为圆心,AC为半径画圆,交AB于点E,

17、连接DE即可;(2)设EBa,则DEa1,DBa+1,根据勾股定理BD2DE2+EB2,解得a4,设ACx,则AEx,ABx+4,根据勾股定理AC2+BC2AB2,解得x6,在RtACD中,根据勾股定理【详解】解:(1)点E如图所作;(2)DE,EB,DB的长度是三个从小到大的连续正整数,设EBa,则DEa1,DBa+1,ACD与AED关于AD对称,ACDAED,AEDACD90,在RtDEB中,根据勾股定理BD2DE2+EB2,(a+1)2(a1)2+a2,解得a4,CD=DEa1=3,DBa+1=5BC= DE+DB=8设ACx,则AEx,ABx+4,在RtABC中,根据勾股定理AC2+B

18、C2AB2,x2+82(x+4)2,解得x6,在RtACD中,根据勾股定理【点睛】本题考查了尺规作图,轴对称的性质以及勾股定理,掌握轴对称的性质是解题的关键2、(1)见解析;(2)【分析】(1)根据旋转的性质:点B和点,点A和点到点N的距离相等,且即可;(2)线段AB扫过的面积为,由扇形面积公式计算即可【详解】(1)如图所示:(2)如图,线段AB扫过的面积=【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键3、(1)见解析;(2)【分析】(1)根据题意作图即可;过点F作FHCB,交CB的延长线于H,证明DECEFH得到ECFH2,CDBCEH6,则HBEC2,在

19、RtFHB中,利用勾股定理即可求解;(2)过点F作FHCB,交CB于H,先证明DECEFH得到ECFH,CDBCEH,则HBECHF,DCB和BHF都是等腰直角三角形,由此利用勾股定理求解即可【详解】解(1)如图所示,即为所求;如图所示,过点F作FHCB,交CB的延长线于H,四边形ABCD是正方形,CDAB6,C90,DEFC90,DEC+FEH90,DEC+EDC90,FEHEDC,在DEC和EFH中,DECEFH(AAS),ECFH2,CDBCEH6,HBEC2,RtFHB中,BF(2)结论:BF+BDBE理由:过点F作FHCB,交CB于H,四边形ABCD是正方形,CDAB,DCE90,D

20、EFDCE90,DEC+FEH90,DEC+EDC90,FEHEDC,在DEC和EFH中,DECEFH(AAS),ECFH,CDBCEH,HBECHF,DCB和BHF都是等腰直角三角形,HE+BHBE,BF+BDBE【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,解题的关键在于能够正确作出辅助线,构造全等三角形4、(1)点为点A关于线段的“旋转中点”;(2)t的取值范围或【分析】(1)分别假设点为点A关于线段的“旋转中点”,求出点(旋转之前的点),查看点是否在线段即可;设点A关于线段的“旋转中点”的坐标为,按照题意,逆向思维找到点,根据点在线段上,求解即可;(2)设旋转中

21、点的坐标为,则应满足,找到点,线段的中点为,再将点逆时针旋转,得到点,点应该在使得点在的内部(不包括边界),求解即可【详解】解:(1)假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点在线段上,符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;综上所得,点为点A关于线段的“旋转中点

22、”,设点A关于线段的“旋转中点”的坐标为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在线段上,即,解得;(2)设的内部(不包括边界)存在点G关于D的“旋转中点”,为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在D上, 即,解得,02n+t2或-22n+t0,或,设EF解析式为把坐标代入得,解得,EF解析式为,由题意可得:点在的内部(不包括边界),0n2,又,解得, ,t的取值范围或【点睛】此题考查了坐标系点坐标的旋转变换,涉及了不等式组的求解,新概念的理解,解题的关键是理解点P和图形W“旋转中点”的概念,并掌握点绕原点顺时针或逆时针旋转后的坐标公式绕原点旋转的坐标公式:点绕原点顺时针转后坐标为,逆时针转旋转坐标为5、(1)证明见解析;(2)【分析】(1)根据旋转角求出ABD=CBE,然后利用“边角边”证明ABD和BCE全等 (2)先求解 再求解 可得 再利用三角形的内角和定理可得答案【详解】(1)证明:ABC绕点B按逆时针方向旋转100, ABD=CBE=100, (2) , 【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质,熟练掌握全等三角形的判定与性质是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁