矩阵特征值.ppt

上传人:得****1 文档编号:76424473 上传时间:2023-03-10 格式:PPT 页数:47 大小:1.03MB
返回 下载 相关 举报
矩阵特征值.ppt_第1页
第1页 / 共47页
矩阵特征值.ppt_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《矩阵特征值.ppt》由会员分享,可在线阅读,更多相关《矩阵特征值.ppt(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、矩阵特征值一、特征值与特征向量的概念二、特征值与特征向量的性质三、特征值与特征向量的求法说明说明矩阵特征值解解例例1 1 例例 解解例例 设设求求A的特征值与特征向量的特征值与特征向量解解得基础解系为:得基础解系为:例例 证明:若证明:若 是矩阵是矩阵A的特征值,的特征值,是是A的属于的属于的特征向量,则的特征向量,则证明证明再继续施行上述步骤再继续施行上述步骤 次,就得次,就得证明证明则则即即类推之,有类推之,有矩阵特征值把上列各式合写成矩阵形式,得把上列各式合写成矩阵形式,得注意注意.属于不同特征值的特征向量是线性无关属于不同特征值的特征向量是线性无关的的.属于同一特征值的特征向量的非零线

2、性属于同一特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量组合仍是属于这个特征值的特征向量.矩阵的特征向量总是相对于矩阵的特征矩阵的特征向量总是相对于矩阵的特征值而言的,一个特征值具有的特征向量不唯一;值而言的,一个特征值具有的特征向量不唯一;一个特征向量不能属于不同的特征值一个特征向量不能属于不同的特征值例例5 5 设设A是是 阶方阵,其特征多项式为阶方阵,其特征多项式为解解矩阵特征值求矩阵特征值与特征向量的步骤:求矩阵特征值与特征向量的步骤:矩阵特征值矩阵特征值矩阵特征值矩阵特征值一、相似矩阵与相似变换的概念一、相似矩阵与相似变换的概念二、相似矩阵与相似变换的性质二、相似矩阵与相

3、似变换的性质三、利用相似变换将方阵对角化三、利用相似变换将方阵对角化矩阵特征值1.等价关系等价关系矩阵特征值证明证明推论推论 若若 阶方阵阶方阵A A与对角阵与对角阵利用对角矩阵计算矩阵多项式利用对角矩阵计算矩阵多项式k个个利用上利用上述结论可以述结论可以很方便地计很方便地计算矩阵算矩阵A 的的多项式多项式 .定理定理证明证明证明证明矩阵特征值命题得证命题得证.说明说明 如果如果 阶矩阵阶矩阵 的的 个特征值互不相等,个特征值互不相等,则则 与对角阵相似与对角阵相似推论推论如果如果 的特征方程有重根,此时不一定有的特征方程有重根,此时不一定有 个线性无关的特征向量,从而矩阵个线性无关的特征向量

4、,从而矩阵 不一定能不一定能对角化,但如果能找到对角化,但如果能找到 个线性无关的特征向量,个线性无关的特征向量,还是能对角化还是能对角化例例1 1 判断下列实矩阵能否化为对角阵?判断下列实矩阵能否化为对角阵?解解解之得基础解系解之得基础解系求得基础解系求得基础解系解之得基础解系解之得基础解系故故 不能化为对角矩阵不能化为对角矩阵.A能否对角化?若能对角能否对角化?若能对角例例2 2解解解之得基础解系解之得基础解系所以所以 可对角化可对角化.注意注意即矩阵即矩阵 的列向量和对角矩阵中特征值的位置的列向量和对角矩阵中特征值的位置要相互对应要相互对应矩阵特征值相似矩阵相似矩阵 相似是矩阵之间的一种

5、关系,它具有很多良好相似是矩阵之间的一种关系,它具有很多良好的性质,除了课堂内介绍的以外,还有:的性质,除了课堂内介绍的以外,还有:相似变换与相似变换矩阵相似变换与相似变换矩阵这种变换的重要意义在于这种变换的重要意义在于简化对矩阵的各种简化对矩阵的各种运算运算,其方法是先通过相似变换,将矩阵变成与,其方法是先通过相似变换,将矩阵变成与之等价的对角矩阵,再对对角矩阵进行运算,从之等价的对角矩阵,再对对角矩阵进行运算,从而将比较复杂的矩阵的运算转化为比较简单的对而将比较复杂的矩阵的运算转化为比较简单的对角矩阵的运算角矩阵的运算相似变换相似变换是对方阵进行的一种运算,它把是对方阵进行的一种运算,它把A变成,而可逆矩阵变成,而可逆矩阵 称为进行这一变换的称为进行这一变换的相似变换矩阵相似变换矩阵矩阵特征值矩阵特征值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁