几何不变体系课件.ppt

上传人:得****1 文档编号:75134504 上传时间:2023-03-02 格式:PPT 页数:26 大小:1.83MB
返回 下载 相关 举报
几何不变体系课件.ppt_第1页
第1页 / 共26页
几何不变体系课件.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《几何不变体系课件.ppt》由会员分享,可在线阅读,更多相关《几何不变体系课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.1构造分析的几个基本概念一、构造分析的目的1、研究结构 正确的连接方式,确保所设计的结构能承受荷载,维持平衡,不至于发生刚体运动。2、在结构计算时,可根据其几何组成情况,选择适当的计算方法;分析其组成顺序,寻找简便的解题途径。二、体系的分类:在忽略变形的前提下,体系可分为两类:1、几何不变体系:在任何外力作用下,其形状和位置都不会改变。图 b 图a2、几何可变体系:在外力作用下,其形状或位置会改变。1几何可变体系又可分为两种:(1)几何常变体系:受力后可发生有限位移。(2)几何瞬变体系:受力后可发生微量位移。APANNPNNPAP是微量Y=0,N=0.5P/sin由于瞬变体系能产生很大的内

2、力,故几何常变体系和几何瞬变体系不能作为建筑结构使用.只有几何不变体系才能作为建筑结构使用!2三、自由度:所谓体系的自由度是指体系运动时,可以独立改变的几何参数的数目;即确定体系位置所需独立坐标的数目。1、平面内一点各自由度;xyyx图aX oyyx图b2、平面内一刚片各自由度;233四、约束:在体系内部加入的减少自由度的装置1、链杆:仅在两处与其它物体用铰相连,不论其形状和铰的位置如何。2314一根链杆可以减少体系一个自由度,相当于一个约束。!5642、单铰:联结 两个 刚片的铰加单铰前体系有六个自由度xy加单铰后体系有四个自由度单铰可减少体系两个单铰可减少体系两个自由度相当于两个约束自由度

3、相当于两个约束3、虚铰(瞬铰)AO两根不共线的链杆相当于一个单铰两根不共线的链杆相当于一个单铰即瞬铰即瞬铰12C单铰瞬铰定轴转动平面运动!5联结三个或三个以上刚片的铰AB先有刚片A,然后以单铰将刚片B联于刚片A,再以单铰将刚片C联刚片于A上 也可以理解加复铰前三个刚共有九个自由度xy C 所以联结三个刚片的复铰相当于两个单铰,减少体系四个约束。,加复铰后还剩图示五个自由度。4、复铰(重铰)一般说来,联结n个刚片的复铰相当于n-1个 单铰,相当于 2(n-1)个约束!66、单刚结点:将两刚片联结成一个整体的结点图示两刚片有六个自由度一个单刚结点可减少三个自由度相当于三个约束。加刚联结后有三个自由

4、度5多余约束:不减少体系自由度过的约束称为多余约束。a注意:多余约束是结构中有用的、不可少的约束。它将影响结构的受力与变形,只是不减少体系的自由度。A刚结点将刚片连成整体(新刚片)。若是发散的,无多余约束,若是闭合的,则每个无铰封闭框都有三个多余约束。72.2体系的计算自由度一个平面体系通常都是由若干部件刚片(结点)加入一些约束组成。按照各部件都是自由的情况,算出各部件自由度总数,再算出所加入的约束总数,将两者的差值定义为体系的计算自由度W。即:W=(各部件自由度总数)(全部约束总数)如以m表示刚片数,h表示单铰数,r表示支承链杆数,则W=3m (2h+r)(21)注意注意:1、复铰要换算成单

5、铰。正确识别复铰连接的刚片数。连四刚片 h=3连三刚片 h=2连两刚片 h=12、刚接在一起的各刚片作为一大刚片。如带有a个无铰封闭框,约束数应加 3a 个。3、饺支座、定向支座相当于两个支承链杆,固定端相当于三个支承链杆。!8对于铰接链杆体系也可将结点视为部件,链杆视为约束,则:W=2jbr式中:j为结点数;b为链杆数;r支承链杆数例a:j=6;b=9;r=3。所以:W=2693=0ABCDEF 例b:j=6;b=9;r=3。所以:W=2693=0 9m=1,a=1,h=0r=4+3210则:W=3m2h r 3a =3110 31 10m=7,h=9,r=3W=3m2hr =37293 =

6、010注意:1、W并不一定代表体系的实际自由度,仅说明了体系必须的约束数够不够。即:W0 体系缺少足够的约束,一定是几何可变体系。W=0 实际约束数等于体系必须的约束数W0 体系有多余约束不能断定体系是否几何不变由此可见:W0 只是保证体系为几何不变的必要条件,而不是充分条件。2、实际自由度S、计算自由度W和多余约束n之间的关系:S=(各部件自由度总数)(非多余约束数)=(各部件自由度总数)(全部约束数多余约束数)=(各部件自由度总数)(全部约束数)+(多余约束数)由此可见:只有当体系上没有多余约束时,计算自由度才是 体系的实际自由度!+n所以:S =W112.3无多余约束几何不变体系的组成规

7、则无多余约束几何不变体系的组成规则图a为一无多余约束的几何不变体系ABC图a将杆AC,AB,BC均看成刚片,一、三刚片以不在一条直线上的三铰一、三刚片以不在一条直线上的三铰 相联,组成无多余约束的几何不相联,组成无多余约束的几何不 变体系。变体系。三三铰共线瞬变体系三刚片以三对平行链杆相联:瞬变体系两平行链杆于两铰连线平行:瞬变体系 就成为三刚片组成的无多余约束的几何不变体系12图a为一无多余约束的几何不变体系A C将杆AC、BC均看成刚片,杆通过铰 瞬变体系二、两刚片以一铰及不通过该铰的 一根链杆相联组成无多余约束的 几何不变体系。AB图a A a就成为两刚片组成的无多余约束几何不变体系B图

8、b三、两刚片以不互相平行,也不相交于一点的三根链杆相 联,组成无多余约束的几何不变体系。瞬变体系瞬变体系o常变体系13ABC将BC杆视为刚片,该体系就成为一刚片于一点相联四、一点与一刚片用两根不共线的四、一点与一刚片用两根不共线的 链杆相联,组成无多余约束的链杆相联,组成无多余约束的 几何不变体系。几何不变体系。A12两根共线的链杆联一点 瞬变体系两根不共线的链杆联结一点称为二元体。在一体系上增加(或减去)二元体不改变原体系的机在一体系上增加(或减去)二元体不改变原体系的机动性,也不改变原体系的自由度。动性,也不改变原体系的自由度。14(a)(b)(c)(e)(d)15规则三刚片必要约束数对约

9、束的布置要求瞬变体系一二三四连接对象两刚片一点一刚片六个三铰(实或虚)不共线三种三个链杆不过铰一种三链杆不平行也不交于一点两种两个两链杆不共线一种【举例】1、几种常用的分析途径1、去掉二元体,将体系化简单,然后再分析。依次去掉二元体ABCDEFG后剩下大地,故该体系为几何不变体系且无多余约束。ABCDEFG16例2:D A C B依次去掉二元体A,B,C,D后剩下大地。故该体系为无多余约束的几何不变体系例3:2、如上部体系于基础用满足要求三个约束相联可去掉基础,只分析上部。抛开基础,只分析上部,上部体系右左右两刚片用一铰和一链杆相连故:该体系为无多余约束的几何不变体系!例2:D A C BAF

10、CGBED18例5、抛开基础,分析上部,去掉二元体后,剩下两个刚片用两根杆相连故:该体系为有一个自由度的几何可变体系ABDECFABCFD3、当体系杆件数较多时,将刚片选得分散些,用链杆相连,而不用单铰相连。例6、O12O23O13如图示,三刚片用三个不共线的铰相连,故:该体系为无多余约束的几何不变体系19例几何瞬变体系(,)(,)(,)(,)(,)(,)如图示,三刚片以共线三铰相连三刚片以三个无穷远处虚铰相连组成瞬变体系20(1,3)(1,2)(2,3)如图所示:三刚片用不共线三饺相连,故 无多余约束的几何不变体系。例4、4、由一基本刚片开始,逐步增加二元体,扩大刚片的范围,将体系归结为两个

11、刚片或三个刚片相连,再用规则判定。215、由基础开始逐件组装有一个多余约束的几何不变体系无多余约束几何不变体系22 6、刚片的等效代换:在不改变刚片与周围的连结方式的前提下,可以改变它的大小、形状及内部组成。即用一个等效(与外部连结等效)刚片代替它。有一个多余约束的几何不变体系两个刚片用三根平行不等长的链杆相连,几何瞬变体系23进一步分析可得,体系是无多余约束的几何不变体系24人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁