《糖类与糖代谢.pptx》由会员分享,可在线阅读,更多相关《糖类与糖代谢.pptx(152页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一节 糖类一、糖的概念 糖即碳水化合物,是多羟基醛与多羟基酮及其衍生物或多聚物.它主要是由绿色植物经光合作用形成的,主要是由C、H、O构成的。二、糖的分类 根据水解后产生单糖残基的多少分为四大类单糖寡糖多糖糖复合物参见参见103-121103-121第1页/共152页1.单糖:不能再水解的糖D-D-葡萄糖葡萄糖1234566-6-磷酸葡萄糖磷酸葡萄糖参见参见104-104-109109第2页/共152页第3页/共152页 D-D-果糖果糖1234566-6-磷酸果糖磷酸果糖第4页/共152页核糖核糖321455-5-磷酸核糖磷酸核糖第5页/共152页核酮糖核酮糖321455-5-磷酸核酮糖磷
2、酸核酮糖核酮糖核酮糖 戊酮糖戊酮糖第6页/共152页甘油醛甘油醛1233-3-磷酸甘油醛磷酸甘油醛甘油醛甘油醛 丙醛糖丙醛糖第7页/共152页二羟丙酮二羟丙酮123磷酸二羟丙酮磷酸二羟丙酮二羟丙酮二羟丙酮 丙酮糖丙酮糖第8页/共152页葡萄糖在体内的作用葡萄糖在体内的作用葡萄糖是体内糖代谢的中心(1)葡萄糖是食物中糖(如淀粉)的消化产物(2)葡萄糖在生物体内可转变成其它的糖,如核糖、果糖、半乳糖、糖原等;(3)葡萄糖是哺乳动物及胎儿的主要供能物质(4)葡萄糖可转变为氨基酸和脂肪酸的碳骨架第9页/共152页2.双糖双糖:由两个相同或不同的单糖组成,常见的有乳糖、蔗糖、麦芽糖等.14麦芽糖-D-D
3、-葡萄糖苷葡萄糖苷-(1414)-D-D-葡萄糖葡萄糖参见参见109-111109-111第10页/共152页11214-D-D-葡萄糖苷葡萄糖苷-(1212)-D-D-果糖果糖-D-D-半乳糖苷半乳糖苷-(1414)-D-D-葡萄糖葡萄糖乳糖蔗糖第11页/共152页3.多糖定义:水解产物含6个以上单糖常见的多糖淀粉、糖原、纤维素等参见参见111-118111-118第12页/共152页第13页/共152页淀粉蓝色蓝色:-1,4-1,4-糖苷键糖苷键红色红色:-1,6-1,6-糖苷键糖苷键直链淀粉直链淀粉支链淀粉支链淀粉第14页/共152页糖原糖原非还原端非还原端还原端还原端糖原的分子结构糖原
4、的分子结构第15页/共152页糖原在体内的作用糖原是体内糖的贮存形式 糖原贮存的主要器官是肝脏和肌肉组织肝糖原:含量可达肝重的5%(总量为90-100g)肌糖原:含量为肌肉重量的1-2%(总量为200-400g)人体内糖原的贮存量有限,一般不超过500g.第16页/共152页肝细胞中的糖原颗粒糖原颗粒第17页/共152页纤维素纤维素 作为植物的骨架作为植物的骨架-1,4-糖苷键糖苷键参见参见114114第18页/共152页第19页/共152页4.糖复合物糖与非糖物质的结合物常见的糖复合物有:糖与蛋白质的复合物糖蛋白:以蛋白质为主,糖为蛋白质的辅基。如卵清蛋白含糖基1%蛋白多糖:以多糖为主,蛋白
5、质或多肽的比例较少见的辅基。如粘蛋白含糖基80%糖与脂类的结合物糖脂:脂多糖:参见参见77-8077-80第20页/共152页 氧化功能 1g葡萄糖 16.7kJ 正常情况下约占机体所需总能量的50-70%构成组织细胞的基本成分1、核糖和脱氧核糖是核酸的基本组成成分;2、糖与脂类或蛋白质结合形成糖脂或糖蛋白/蛋白聚糖 (统称糖复合物)。糖复合物不仅是细胞的结构分 子,而且是信息分子。3、体内许多具有重要功能的蛋白质都是糖蛋白,如抗 体、许多酶类和凝血因子等。三、糖的主要生理功能参见参见159159第21页/共152页一、双糖的水解 蔗糖+H2O 葡萄糖+果糖 转化酶蔗糖酶第二节 双糖和多糖的酶
6、促降解1.转化酶2.蔗糖合成酶 催化蔗糖与UDP反应生成果糖和尿苷二磷酸葡萄糖 蔗糖+UDP UDPG+果糖(一)蔗糖的水解第22页/共152页(二)麦芽糖的水解麦芽糖+H2O麦芽糖酶2葡萄糖(三)乳糖的水解乳糖+H2O葡萄糖-半乳糖 +乳糖酶-半乳糖苷酶第23页/共152页二、淀粉(糖原)的降解1.1.淀粉的水解淀粉的水解2.2.淀粉淀粉(糖原)(糖原)的磷酸解的磷酸解-淀粉酶淀粉酶-淀粉酶淀粉酶R-R-酶酶(脱支酶)脱支酶)麦芽糖酶麦芽糖酶磷酸化酶磷酸化酶转移酶转移酶脱支酶脱支酶胞外降解胞外降解胞内降解胞内降解参见参见226226第24页/共152页 是淀粉内切酶,作用于淀粉分子内部的任意
7、的-1,4 糖苷键。极限糊精是指淀粉酶不能再分解的支链淀粉残基。-极限糊精是指含-1,6糖苷键由3个以上葡萄糖基构成的极限糊精。(一)淀粉的水解1、-淀粉酶直链淀粉直链淀粉直链淀粉直链淀粉 葡萄糖葡萄糖葡萄糖葡萄糖+麦芽糖麦芽糖麦芽糖麦芽糖+麦芽三糖麦芽三糖麦芽三糖麦芽三糖+低聚糖的混低聚糖的混低聚糖的混低聚糖的混合物合物合物合物支链淀粉支链淀粉支链淀粉支链淀粉 葡萄糖葡萄糖葡萄糖葡萄糖+麦芽糖麦芽糖麦芽糖麦芽糖+麦芽三糖麦芽三糖麦芽三糖麦芽三糖+-极限糊极限糊极限糊极限糊精精精精第25页/共152页2、-淀粉酶 是淀粉外切酶,水解是淀粉外切酶,水解-1-1,4 4糖苷键,从淀粉分子外即糖苷键
8、,从淀粉分子外即非还原端非还原端开始,每开始,每间间隔一个糖苷键隔一个糖苷键进行水解,进行水解,每次水解出一个麦芽糖分子。每次水解出一个麦芽糖分子。直链淀粉直链淀粉 麦芽糖麦芽糖支链淀粉支链淀粉 麦芽糖麦芽糖+-极限糊精极限糊精 -极限糊精极限糊精是指是指-淀粉酶作用到离分支点淀粉酶作用到离分支点2-32-3个葡萄糖基为止的剩余部个葡萄糖基为止的剩余部分。分。两种淀粉酶降解的终产物主要是麦芽糖第26页/共152页两种淀粉酶性质的比较两种淀粉酶性质的比较 -淀粉酶不耐酸,pH3时失活耐高温,70C时15分钟仍保持活性广泛分布于动植物和微生物中。-淀粉酶耐酸,pH3时仍保持活性不耐高温,70C15
9、分钟失活主要存在植物体中第27页/共152页-淀粉酶及-淀粉酶水解支链淀粉的示意图 -淀粉酶-淀粉酶第28页/共152页3、R-酶(脱支酶)水解-1,6糖苷键,将及-淀粉酶作用支链淀粉最后留下的极限糊精的分支点水解,产生短的只含-1,4-糖苷键的糊精,使之可进一步被淀粉酶降解。不能直接水解支链淀粉内部的-1,6糖苷键。4、麦芽糖酶 催化麦芽糖水解为葡萄糖,是淀粉水解的最后一步。u淀粉的彻底水解需要上述水解酶的共同作用,其最终产物是葡萄糖第29页/共152页(二)淀粉的磷酸解磷酸化酶催化淀粉非还原末端的葡萄糖残基转移给P,生成G-1-P,同时产生一个新的非还原末端,重复上述过程。直链淀粉 G-1
10、-P支链淀粉 G-1-P+磷酸化酶极限糊精 磷酸化酶不能将支链淀粉完全降解,只能降解到距分支点4个葡萄糖残基为止,留下一个大而有分支的多糖链,称为磷酸化酶极限糊精。磷酸化酶第30页/共152页 淀粉(或糖原)降解 1.到分枝前4 4个G时,淀粉磷酸化酶停止降解2.由转移酶切下前3 3个G,转移到另一个链上3.脱支酶水解-1,6糖苷键形成直链淀粉。脱下的Z是一个游离葡萄糖4.最后由磷酸化酶降解形成G-1-PG G1 1P P脱支酶磷酸化酶第31页/共152页 糖原降解主要有糖原磷酸化酶和糖原脱支酶催化进行。肝脏肌肉G+Pi(葡萄糖-6-磷酸酶)进入糖酵解糖原磷酸化酶:从非还原端催化1-4糖苷键的
11、磷酸解。(三)糖原的降解(自学)磷酸葡萄糖变位酶G-6-PG-1-P糖原+Pi 糖原+G-1-P(n残基)(n-1残基)参见参见226-227226-227第32页/共152页例 肝糖元的分解第33页/共152页77磷酸化酶磷酸化酶(别构酶别构酶)ATP抑制抑制-AMP激活激活+H3PO4葡萄糖葡萄糖1,4糖苷键糖苷键葡萄糖葡萄糖1,6糖苷键糖苷键糖原核心糖原核心糖原核心糖原核心 G-1-P+第34页/共152页去分枝酶去分枝酶+H3PO41 G-1-P糖原核心糖原核心磷酸化酶磷酸化酶+H3PO4G-1-P去单糖降解去单糖降解转移酶转移酶糖原核心糖原核心第35页/共152页第36页/共152页
12、 机体的生存需要能量,机体内主要提供能量的物质是ATP。ATP的形成主要通过两条途径:在无氧条件下,由葡萄糖降解为丙酮酸,产生2 2分 子ATPATP。在有氧条件下,由葡萄糖彻底氧化为COCO2 2和水,形 成大量的ATPATP。第三节 糖的分解代谢第37页/共152页丙酮酸葡萄糖“糖酵解”不需氧“磷酸戊糖途径”需氧有氧情况缺氧情况好氧生物厌氧生物“三羧酸循环”“乙醛酸循环”COCO2 2+H+H2 2O O“乳酸发酵”乳酸“乳酸发酵”、“乙醇发酵”乳酸或乙醇 COCO2 2+H+H2 2O O重点重点一、一、糖酵解的概述3.1 3.1 糖酵解糖酵解第38页/共152页1、糖酵解的概念 糖酵解
13、作用:在无氧条件下,葡萄糖进行分解形成在无氧条件下,葡萄糖进行分解形成2分子的丙酮酸并提供能分子的丙酮酸并提供能量。这一过程称为量。这一过程称为糖酵解作用。是一切有机体中普遍存在的。是一切有机体中普遍存在的葡萄糖降解途径,葡萄糖降解途径,也是葡萄糖分解代谢所经历的共同途径。也称为也是葡萄糖分解代谢所经历的共同途径。也称为EMP途径。途径。v糖酵解是糖酵解是在在细胞质细胞质中进行。不论有氧还中进行。不论有氧还是无氧条件均能发生。是无氧条件均能发生。E:Embden;M:Meyerhof;P:Parnas第39页/共152页 10个酶催化的11步反应第一阶段第一阶段:磷酸已糖的生成磷酸已糖的生成(
14、活化活化)四 个 阶 段第二阶段第二阶段:磷酸丙糖的生成磷酸丙糖的生成(裂解裂解)第三阶段第三阶段:3-3-磷酸甘油醛转变为磷酸甘油醛转变为2-2-磷酸磷酸 甘油酸油酸 第四阶段第四阶段:由由2-2-磷酸甘油酸生成丙酮酸磷酸甘油酸生成丙酮酸二、糖酵解过程第40页/共152页 (G)G)已糖激酶已糖激酶ATPADP糖酵解过程的第一个糖酵解过程的第一个限速酶限速酶(G-6-PG-6-P)葡萄糖磷酸化生成 6-6-磷酸葡萄糖糖酵解过程1第41页/共152页 6-磷酸葡萄糖异构化 转变为6-磷酸果糖 (F-6-PF-6-P)糖酵解过程1 磷酸葡萄糖异构酶磷酸葡萄糖异构酶(G-6-PG-6-P)第42页
15、/共152页 6-磷酸果糖再磷酸化 生成1,6-二磷酸果糖糖酵解过程1(F-1,6-2PF-1,6-2P)磷酸果糖激酶磷酸果糖激酶 (PFKPFK)ATPADP糖酵解过程的第二个糖酵解过程的第二个限速酶限速酶 (F-6-PF-6-P)第43页/共152页 磷酸丙糖的生成磷酸二羟丙酮磷酸二羟丙酮3-3-磷酸甘油醛磷酸甘油醛 (F-1,6-2PF-1,6-2P)醛缩酶醛缩酶+糖酵解过程2第44页/共152页 磷酸丙糖的互换糖酵解过程2磷酸二羟丙酮磷酸二羟丙酮(dihydroxyacetone phosphate)dihydroxyacetone phosphate)3-3-磷酸甘油醛磷酸甘油醛(g
16、lyceraldehyde 3-phosphate)glyceraldehyde 3-phosphate)磷酸丙糖异构酶磷酸丙糖异构酶1,6-1,6-二磷酸果糖 2 2 3-3-磷酸甘油醛第45页/共152页 上述的上述的5步反应完成了糖酵解的准备阶步反应完成了糖酵解的准备阶段。酵解的准备阶段包括段。酵解的准备阶段包括两个磷酸化步骤两个磷酸化步骤由六碳糖裂解为两分子三碳糖,由六碳糖裂解为两分子三碳糖,最后都转最后都转变为变为3-磷酸甘油醛磷酸甘油醛。在准备阶段中,并没有从中获得任何能在准备阶段中,并没有从中获得任何能量,与此相反,却量,与此相反,却消耗了两个消耗了两个ATP分子分子。以下的以下
17、的5步反应包括氧化步反应包括氧化还原反应、还原反应、磷酸化反应。这些反应正是磷酸化反应。这些反应正是从从3-磷酸甘油磷酸甘油醛提取能量形成醛提取能量形成ATP分子分子。第46页/共152页 3-磷酸甘油醛氧化为 1,3-二磷酸甘油酸糖酵解过程3第47页/共152页 1,3-二磷酸甘油酸 转变为3-磷酸甘油酸糖酵解过程33-磷酸甘油酸激酶磷酸甘油酸激酶 3-3-磷酸甘油酸磷酸甘油酸(3-(3-phosphoglycerate)phosphoglycerate)这是糖酵解这是糖酵解中第一次中第一次底物水平底物水平磷酸化反应磷酸化反应1,3-1,3-二磷酸甘油酸二磷酸甘油酸(1,3-(1,3-dip
18、hosphoglycerate)diphosphoglycerate)OPO 3 2-ADPATPMgMg2 2+第48页/共152页底物磷酸化:直接利用代谢中间物氧化释放的能直接利用代谢中间物氧化释放的能量产生量产生ATPATP的磷酸化类型称为底物磷酸化。的磷酸化类型称为底物磷酸化。其中其中ATPATP的形成直接与一个的形成直接与一个代谢中间物代谢中间物(1,3-1,3-二磷酸甘油酸)上的磷酸基团的转移相偶联二磷酸甘油酸)上的磷酸基团的转移相偶联 这一步反应是糖酵解过程的第这一步反应是糖酵解过程的第7步反应,也步反应,也是糖酵解过程是糖酵解过程开始收获的阶段。在此过程中的阶段。在此过程中产生
19、了产生了第一个ATP。第49页/共152页 3-磷酸甘油酸转变 为2-磷酸甘油酸3-3-磷酸甘油酸磷酸甘油酸 (3-(3-phosphoglycerate)phosphoglycerate)糖酵解过程3磷酸甘油酸变位酶磷酸甘油酸变位酶 2-2-磷酸甘油酸磷酸甘油酸(2-(2-phosphoglycerate)phosphoglycerate)第50页/共152页 2-磷酸甘油酸脱水 形成磷酸烯醇式丙酮酸(PEP)磷酸烯醇式磷酸烯醇式 丙酮酸丙酮酸(PEP)2-2-磷酸甘油酸磷酸甘油酸糖酵解过程4烯醇化酶烯醇化酶(Mg2+/Mn2+)H2O氟化物能与Mg2+络合而抑制此酶活性反应引起分子内能量重
20、新分布,形成高能磷酸键。第51页/共152页ADPADPA AT TP PMg2+,K+磷酸烯醇式丙酮酸 转变为烯醇式丙酮酸磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸丙酮酸激酶(PK)烯醇式丙酮酸烯醇式丙酮酸糖酵解过程的第三个限速酶也是第二次底物水平磷酸化反应也是第二次底物水平磷酸化反应糖酵解过程4第52页/共152页 烯醇式丙酮酸 转变为丙酮酸糖酵解过程4ATPATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 丙酮酸丙酮酸ADPADP丙酮酸激丙酮酸激酶酶烯醇式丙酮酸烯醇式丙酮酸(enolpyruvate)enolpyruvate)自发进行自发进行 丙酮酸丙酮酸(pyruvate)pyruvate)第53页/共1
21、52页P3PPOOHOHCH2CH2OO12546P磷酸二羟丙酮磷酸二羟丙酮123+P异构异构6-磷酸果糖磷酸果糖P564磷酸甘油醛磷酸甘油醛PP1,3-二磷酸二磷酸甘油酸甘油酸PCOHCOHH2COOH3-磷酸甘油酸磷酸甘油酸P2-磷酸甘油酸磷酸甘油酸P磷酸烯醇磷酸烯醇式丙酮酸式丙酮酸丙酮酸丙酮酸6-磷酸葡萄糖磷酸葡萄糖PG葡萄糖葡萄糖活化活化裂解裂解脱氢脱氢异构异构PP1,6-二磷二磷酸果糖酸果糖活化活化产能产能脱水脱水异构异构产能产能HHOH第54页/共152页E1:己糖激酶己糖激酶 E2:6-磷酸果糖激酶磷酸果糖激酶-1 E3:丙酮酸激酶丙酮酸激酶 NAD+乳乳 酸酸 糖酵解的代谢途径
22、GluG-6-PF-6-PF-1,6-2PATP ADP ATPADP1,3-二磷酸甘油酸二磷酸甘油酸 3-磷酸甘油酸磷酸甘油酸 2-磷酸甘油酸磷酸甘油酸 丙丙 酮酮 酸酸 磷酸二羟丙酮磷酸二羟丙酮 3-磷酸甘油醛磷酸甘油醛 NAD+NADH+H+ADP ATP ADP ATP磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 E2E1E3NADH+H+参见参见235235第55页/共152页1 1、酵母在无氧条件下将丙酮酸转化为乙醇和、酵母在无氧条件下将丙酮酸转化为乙醇和COCO2 2。(l)l)丙酮酸脱羧三、丙酮酸的去路葡萄糖进行乙醇发酵的总反应式为:葡萄糖+2Pi+2ADP 2乙醇+2CO2+2ATPCH
23、3COCOOH CH3CHO+CO2丙酮酸 乙醛丙酮酸脱羧酶丙酮酸脱羧酶TPP(2)乙醛被还原为乙醇参见参见235235CHCH3 3CHO+NADH+H CHO+NADH+H+CH CH3 3CHCH2 2OH+NADOH+NAD+乙醛乙醛 乙醇乙醇ZnZn2+2+乙醇脱氢酶乙醇脱氢酶 第56页/共152页2 2 2 2、丙酮酸、丙酮酸、丙酮酸、丙酮酸还原还原还原还原为乳酸为乳酸为乳酸为乳酸丙酮酸丙酮酸(pyruvate)pyruvate)3-3-磷酸甘油醛磷酸甘油醛3-磷酸甘油醛脱氢酶磷酸甘油醛脱氢酶Pi Pi 乳酸乳酸(lactate)lactate)乳酸脱氢酶乳酸脱氢酶NADNADH
24、H+H H+NAD NAD+参见参见2352351,3-1,3-二磷酸甘油酸二磷酸甘油酸OPO 3 2-第57页/共152页4、转化为脂肪酸或酮体 参见参见270-271270-271 当细胞ATP水平较高时,柠檬酸循环的速率下降,乙酰CoA开始积累,可用作脂肪的合成或酮体的合成。3、在有氧条件下,丙酮酸进入线粒体生成乙酰CoA丙酮酸+NAD+CoA 乙酰CoA+CO2+NADH+H+第58页/共152页糖酵解过程中ATP的消耗和产生2 1葡葡 萄萄 糖糖 6-6-磷酸葡萄糖磷酸葡萄糖 6-6-磷酸果糖磷酸果糖 1,6-1,6-二磷酸果糖二磷酸果糖1,3-1,3-二磷酸甘油酸二磷酸甘油酸 3-
25、3-磷酸甘油酸磷酸甘油酸磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸 丙丙 酮酮 酸酸 -1 反反 应应 ATP -1-12 1 葡萄糖葡萄糖+2Pi+2ADP+2NAD+2丙酮酸丙酮酸+2ATP+2NADH+2H+2H2O四、糖酵解中产生的能量参见参见236236第59页/共152页五、糖酵解意义1、主要在无氧条件下迅速提供少量的能量应急.如:肌肉收缩、人到高原。2、是某些细胞在不缺氧条件下的能量来源。3、是糖的有氧氧化的前过程,亦是糖异生作用大部分逆过程。5、是糖、脂肪和氨基酸代谢相联系的途径.其中间产物是许多重要物质合成的原料。6、若糖酵解过度,可因乳酸生成过多而导致乳酸中毒。参见参见168168第
26、60页/共152页肌肉收缩与糖酵解供能 背景:剧烈运动时肌肉内ATP含量很低;肌肉中磷酸肌酸储存的能量可 供肌肉收缩所急需的化学能;即使氧不缺乏,葡萄糖进行有氧氧化的过程 比糖酵解长得多,来不及满足需要;肌肉局部血流不足,处于相对缺氧状态。结论:结论:糖酵解为肌肉收缩迅速提供能量第61页/共152页u细胞对酵解速度的调控是为了满足细胞对细胞对酵解速度的调控是为了满足细胞对能量及碳骨架的需求。能量及碳骨架的需求。u在代谢途径中,催化在代谢途径中,催化不可逆反应的酶所处所处的部位是控制代谢反应的有力部位。的部位是控制代谢反应的有力部位。u糖酵解中有三步反应不可逆,分别由糖酵解中有三步反应不可逆,分
27、别由己糖己糖激酶、磷酸果糖激酶、丙酮酸激酶激酶、磷酸果糖激酶、丙酮酸激酶催化,因催化,因此这三种酶对酵解速度起调节作用。此这三种酶对酵解速度起调节作用。六、糖酵解的调控参见参见237237第62页/共152页1 1、磷酸果糖激酶(PFKPFK)的调控6-磷酸果糖激酶磷酸果糖激酶-16-phosphofructokinase-1ATP柠檬酸柠檬酸长链脂肪酸-ADP、AMP1,6-1,6-双磷酸果糖双磷酸果糖2,6-2,6-双磷酸果糖双磷酸果糖+磷酸果糖激酶是一种变构酶,是糖酵解三个限速酶中催化效率最低的酶,是糖酵解作用最重要的限速酶。第63页/共152页2、己糖激酶的调控己糖激酶己糖激酶hexo
28、kinaseG-6-P-己糖激酶不是糖酵解过程关键的限速酶第64页/共152页丙酮酸激酶丙酮酸激酶pyruvate kinaseATP丙氨酸丙氨酸(肝肝)-1,6-1,6-双磷酸果糖双磷酸果糖+3、丙酮酸激酶的调控第65页/共152页葡萄糖在有氧条件下,彻底氧化成水和CO2的反应过程称为有氧氧化。有氧氧化是糖氧化的主要方式,绝大多数组织细胞都通过有氧氧化获得能量。3.2 糖有氧分解参见参见237237第66页/共152页糖有氧氧化过程葡萄糖葡萄糖丙酮酸丙酮酸丙酮酸丙酮酸乙酰乙酰CoACoACOCO2 2+H+H2 2O+ATPO+ATP三羧酸循环三羧酸循环糖的有氧氧化糖的有氧氧化乳酸乳酸糖酵解
29、糖酵解线粒体内线粒体内胞浆胞浆细胞质细胞质第67页/共152页糖的有氧氧化与糖酵解细胞细胞胞浆胞浆线粒体线粒体葡萄糖葡萄糖丙酮酸丙酮酸乳酸乳酸(糖酵解糖酵解)葡萄糖葡萄糖丙酮酸丙酮酸CO2+H2O+ATP(糖的有氧氧化)糖的有氧氧化)丙酮酸丙酮酸第68页/共152页第一阶段:第一阶段:丙酮酸的生成(胞浆)丙酮酸的生成(胞浆)第二阶段:第二阶段:丙酮酸氧化脱羧生成乙酰丙酮酸氧化脱羧生成乙酰 CoA CoA(线粒体)线粒体)第三阶段:第三阶段:乙酰乙酰CoACoA进入三羧酸循环进入三羧酸循环 彻底氧化(线粒体)彻底氧化(线粒体)三 个 阶 段糖的有氧氧化过程第69页/共152页 一、丙酮酸的生成(
30、胞浆)葡萄糖葡萄糖+2NAD+2ADP+2Pi 2(丙酮酸丙酮酸+ATP+NADH+H+)2丙酮酸丙酮酸进入线粒体进一步氧化进入线粒体进一步氧化2(2(NADH+HNADH+H+)2 2H H2 2O+5/7 ATPO+5/7 ATP线粒体内膜上特异载体线粒体内膜上特异载体穿梭系统穿梭系统氧化呼吸链氧化呼吸链第70页/共152页二、丙酮酸氧化脱羧生成乙酰辅酶ANADNAD+NAD NADH H+H H+丙酮酸丙酮酸乙酰乙酰CoACoA+CoA-SCoA-SH H辅酶辅酶A A+C OC O2 2丙酮酸脱氢酶系丙酮酸丙酮酸+CoA-SH+NADCoA-SH+NAD+乙酰乙酰CoA CoA+C O
31、C O2 2+NADH+H+NADH+H+多酶复合体:多酶复合体:是催化功能上有联系的几种酶通过是催化功能上有联系的几种酶通过非共价键非共价键连接彼此嵌合形成的复连接彼此嵌合形成的复合体。其中每一个酶都有其特定的催化功能,都有其催化活性必需的辅酶。合体。其中每一个酶都有其特定的催化功能,都有其催化活性必需的辅酶。参见参见238238第71页/共152页丙酮酸脱氢酶系3 种种 酶:酶:丙酮酸脱羧酶丙酮酸脱羧酶(TPP、Mg2+)催化催化丙酮酸氧化脱羧丙酮酸氧化脱羧反应反应 二氢硫辛酸乙酰转移酶二氢硫辛酸乙酰转移酶(硫辛酸硫辛酸、辅酶辅酶A)催化催化将乙酰基转移到将乙酰基转移到CoA反应反应 二氢
32、硫辛酸脱氢酶二氢硫辛酸脱氢酶(FAD、NAD+)催化催化将还原型硫辛酰胺转变成为氧化型将还原型硫辛酰胺转变成为氧化型反应反应6种辅助因子:种辅助因子:TPP、Mg2+、硫辛酸、硫辛酸、辅酶辅酶A、FAD、NAD+第72页/共152页FADFADH2丙酮酸氧化脱羧反应丙酮酸氧化脱羧反应TPPCO2TPPHSCoACH3COSCoANADNAD+NADH+HNADH+H+丙酮酸脱羧酶丙酮酸脱羧酶MgMg2+2+硫辛酸乙酰硫辛酸乙酰转移酶转移酶二氢硫辛酸二氢硫辛酸脱氢酶脱氢酶丙酮酸丙酮酸+CoA-SH+NADCoA-SH+NAD+乙酰乙酰CoA CoA+C OC O2 2+NADH+H+NADH+H
33、+第73页/共152页CO2 CoASHNAD+NADH+H+5.NADH+H+的生成的生成1.-羟乙基羟乙基-TPP的生成的生成 2.乙酰硫辛酰乙酰硫辛酰胺的生成胺的生成 3.乙酰乙酰CoA的生成的生成4.硫辛酰胺的生成硫辛酰胺的生成 第74页/共152页三、三羧酸循环 概念:在概念:在有氧有氧的情况下,葡萄糖酵解产生的丙酮酸氧化的情况下,葡萄糖酵解产生的丙酮酸氧化脱羧形成乙酰脱羧形成乙酰CoA。乙酰乙酰CoA经一系列氧化、脱羧,最经一系列氧化、脱羧,最终生成终生成C2O和和H2O并产生能量的过程并产生能量的过程.因为该循环第一个产物的化合物是柠檬酸因为该循环第一个产物的化合物是柠檬酸,所以
34、称为所以称为柠柠檬酸循环檬酸循环,又因其中间产物中有又因其中间产物中有4个三个羧酸个三个羧酸,所以亦称为所以亦称为三羧酸循环三羧酸循环,简称简称TCA循环循环。由于它是由。由于它是由H.A.Krebs(德德国国)正式提出的,所以又称)正式提出的,所以又称Krebs循环。循环。C C6 6H H1212O O6 6+6O O2 2 6 COCO2 2+6 H H2 2O O +30/32ATP参见参见238238第75页/共152页 乙酰CoA与草酰乙酸缩合形成柠檬酸TCA循环柠檬酸合成酶柠檬酸合成酶草酰乙酸草酰乙酸CH3COSCoA乙酰辅酶乙酰辅酶A A柠檬酸柠檬酸(citrate)citra
35、te)HSCoA乙酰CoA+草酰乙酸 柠檬酸+CoA-SH关键酶关键酶H H2 2O O(一)三羧酸循环的反应过程第76页/共152页异柠檬酸异柠檬酸H2O 柠檬酸异构化生成异柠檬酸柠檬酸柠檬酸顺乌头酸顺乌头酸柠檬酸柠檬酸 异柠檬酸异柠檬酸TCA循环顺乌头酸酶顺乌头酸酶第77页/共152页CO2NADNAD+异柠檬酸异柠檬酸 异柠檬酸氧化脱羧 生成-酮戊二酸-酮戊二酸酮戊二酸草酰琥珀酸草酰琥珀酸NADH+HNADH+H+异柠檬酸脱氢酶异柠檬酸脱氢酶异柠檬酸异柠檬酸+NAD+-酮戊二酸酮戊二酸+CO2+NADH+H+关键酶关键酶TCA循环第78页/共152页CO2-酮戊二酸氧化脱羧 生成琥珀酰辅
36、酶A-酮戊二酸脱氢酶系酮戊二酸脱氢酶系HSCoAHSCoANADNAD+NADH+HNADH+H+琥珀酰琥珀酰CoA-酮戊二酸酮戊二酸-酮戊二酸酮戊二酸+CoA-SH+NAD+琥珀酰琥珀酰CoA+C O2+NADH+H+关键酶TCA循环第79页/共152页 琥珀酰CoA转变为琥珀酸琥珀酰琥珀酰CoA合成酶合成酶琥珀酰琥珀酰CoAATPADP琥珀酸琥珀酸GDP+PiGTPHSCoA琥珀酰琥珀酰CoA+GDP +Pi 琥珀酸琥珀酸+GTP+CoA-SHTCA循环第80页/共152页 琥珀酸氧化脱氢生成延胡索酸TCA循环延胡索酸延胡索酸(fumarate)fumarate)琥珀酸脱氢酶琥珀酸脱氢酶F
37、ADFADH2 2琥珀酸琥珀酸+FAD 延胡索酸延胡索酸+FADH2琥珀酸琥珀酸(succinate)succinate)第81页/共152页 延胡索酸水化生成苹果酸TCA循环延胡索酸延胡索酸(fumarate)fumarate)苹果酸苹果酸(malate)malate)延胡索酸酶延胡索酸酶H2 2O延胡索酸延胡索酸+H2O 苹果酸苹果酸第82页/共152页 苹果酸脱氢生成草酰乙酸 苹果酸脱氢酶苹果酸脱氢酶 草酰乙酸草酰乙酸(oxaloacetate)oxaloacetate)NADNAD+NADH+HNADH+H+苹果酸苹果酸+NADNAD+草酰乙酸草酰乙酸+NADH+HNADH+H+TCA
38、循环苹果酸苹果酸(malate)malate)第83页/共152页三羧酸循环三羧酸循环第84页/共152页三羧酸循环特点 循环反应在线粒体(mitochondrion)中进行,为不可逆反应。三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和-酮戊二酸脱氢酶系。循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。第85页/共152页 三羧酸循环中有两次脱羧反应,生成两分子CO2。循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。循环中有一次底物水平磷酸化,生成一分子GTP。每完成一次循环,氧化分解掉一分子乙酰基,可生成10分子ATP。第86页/共152页三羧酸循环小结 TCA
39、运转一周的净结果是氧化1分子乙酰CoA,草酰乙酸仅起载体作用,反应前后无改变。乙酰辅酶乙酰辅酶A+3NAD+FAD+Pi+2 H2O+GDP2 CO2+3(NADH+H+)+FADH2+HSCoA+GTPTCA中的一些反应在生理条件下是不可逆的,所以整个三羧酸循环是一个不可逆的系统TCATCA的中间产物可转化为其他物质,故需不的中间产物可转化为其他物质,故需不 断补充断补充第87页/共152页(二).TCA中ATP的形成v1分子乙酰辅酶A经三羧酸循环可生成1分子 GTP(可转变成ATP),共有4次脱氢,生成3分子 NADH和1分子 FADH2。v当经呼吸链氧化生成H2O时,前者每对电子可生成
40、2.5分子ATP,3对电子共生成7.5分子ATP;后者则生 成1.5分子ATP。v因此,每分子乙酰辅酶A经三羧酸循环可产生10分 子ATP。若从丙酮酸开始计算,则1分子丙酮酸可 产生12.5分子ATP。v1分子葡萄糖可以产生2分子丙酮酸,因此,2分子丙酮酸经三羧酸循环及氧化磷酸化共产生212.525个ATP分子。参见参见243243第88页/共152页反反 应应ATP第一阶段第一阶段两次耗能反应两次耗能反应-2两次生成两次生成ATP的反应的反应22一次脱氢一次脱氢(NADH+H+)21.5 或或22.5 第二阶段第二阶段一次脱氢一次脱氢(NADH+H+)22.5第三阶段第三阶段三次脱氢三次脱氢
41、(NADH+H+)232.5一次脱氢一次脱氢(FADH2)21.5一次生成一次生成ATP的反应的反应21净生成净生成30或或32糖有氧氧化过程中ATP的生成参见参见243243第89页/共152页(三)TCA生物学意义 糖的有氧分解代谢产生的能量最多,是机体利用糖或其他物质氧化而获得能量的最有效方式。三羧酸循环之所以重要在于它不仅为生命活动提供能量,而且还是联系糖、脂、蛋白质三大物质代谢的纽带。三羧酸循环所产生的多种中间产物是生物体内许多重要物质生物合成的原料。在细胞迅速生长时期,三羧酸循环可提供多种化合物的碳架,以供细胞生物合成使用。参见参见243243第90页/共152页 植物体内三羧酸循
42、环所形成的有机酸,既是生物氧化的基质,又是一定器官的积累物质,发酵工业上利用微生物三羧酸循环生产各种代谢产物.第91页/共152页四、有氧氧化的调节关键酶 酵解途径:酵解途径:己糖激酶己糖激酶 丙酮酸的氧化脱羧丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体丙酮酸脱氢酶复合体 三羧酸循环三羧酸循环:柠檬酸合酶柠檬酸合酶磷酸果糖激酶磷酸果糖激酶丙酮酸激酶丙酮酸激酶异柠檬酸脱氢酶异柠檬酸脱氢酶-酮戊二酸脱氢酶复合体酮戊二酸脱氢酶复合体参见参见244244第92页/共152页丙酮酸脱氢酶系丙酮酸脱氢酶系Pyruvate dehydrogenase complex乙酰乙酰CoA、ATPNADH+H+-+AMP、A
43、DPNAD+*乙酰乙酰CoA/HSCoA 或或 NADH/NAD+时,其活性也受到抑制。时,其活性也受到抑制。1、丙酮酸脱氢酶复合体 第93页/共152页乙酰乙酰CoACoA 柠檬酸 草酰乙酸 琥珀酰CoA -酮戊二酸 异柠檬酸 苹果酸 NADH NADH FADHFADH2 2 GTPGTP ATP ATP 异柠檬酸异柠檬酸 脱氢酶脱氢酶柠檬酸合酶柠檬酸合酶 -酮戊二酸酮戊二酸脱氢酶复合体脱氢酶复合体 ATPATP +ADPADP ADPADP +ATPATP 柠檬酸 NADH NADH 琥珀酰CoACoA 琥珀酰琥珀酰CoA CoA NADH NADH ATP、ADP的影响的影响 产物堆积
44、引起抑制产物堆积引起抑制 循循环环中中后后续续反反应应中中间间产产物物反反馈馈抑抑制制前前面反应中的酶面反应中的酶2、柠檬酸循环的调节柠檬酸循环的调节第94页/共152页柠檬酸合酶柠檬酸合酶citrate synthaseATP柠檬酸、琥珀酰柠檬酸、琥珀酰CoANADH+H+-+ADP第95页/共152页异柠檬酸脱氢酶异柠檬酸脱氢酶isocitrate dehydrogenaseATP-+AMP,ADP第96页/共152页-酮戊二酮戊二酸脱氢酶系酸脱氢酶系-ketoglutarate dehydrogenase complex琥珀酰琥珀酰CoANADH+H+-第97页/共152页3、有氧氧化的
45、调节特点 有氧氧化的调节通过对其关键酶的调节实现。ATP/ADP或ATP/AMP比值全程调节。该比值升高,所有关键酶均被抑制。氧化磷酸化速率影响三羧酸循环。前者速率降低,则后者速率也减慢。三羧酸循环与酵解途径互相协调。三羧酸循环需要多少乙酰CoA,则酵解途径相应产生多少丙酮酸以生成乙酰CoA。第98页/共152页乙醛酸循环乙醛酸循环乙醛酸循环乙醛酸循环3.3 乙醛酸循环乙醛酸循环三羧酸循环支路三羧酸循环支路(自自学学)乙醛酸循环在异柠檬酸与苹果酸间搭了一条捷径。(省了6步)异柠檬酸柠檬酸琥珀酸琥珀酸琥珀酸琥珀酸苹果酸草酰乙酸CoASH三羧酸循环三羧酸循环三羧酸循环三羧酸循环乙酰CoA乙醛酸乙酰
46、CoACoASH第99页/共152页只有一些植物和微生物兼具这两种代谢途径。异柠檬酸裂解酶异柠檬酸裂解酶异柠檬酸异柠檬酸 琥珀酸琥珀酸 乙醛乙醛酸酸乙醛酸乙醛酸 乙酰乙酰CoA 苹果酸苹果酸 苹果酸合成酶苹果酸合成酶第100页/共152页1.概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸,进而代谢生成以磷酸戊糖为中间代谢物的过程,称为磷酸戊糖途径,简称PPP途径。又称磷酸已糖旁路一、磷酸戊糖途径的概念36-磷酸葡萄糖磷酸葡萄糖+6 NADP+2 6-磷酸果糖磷酸果糖+3-磷酸甘油醛磷酸甘油醛+6(NADPH+H+)+3CO2 2.反应部位:胞浆参见参见246246
47、3.4 磷酸戊糖途径第101页/共152页第一阶段:氧化反应 生成NADPH和CO2第二阶段:非氧化反应 一系列基团转移反应 (生成3-磷酸甘油醛和6-磷酸果糖)二、磷酸戊糖途径的过程第102页/共152页(1)6-磷酸葡萄糖磷酸葡萄糖转变为转变为 6-磷酸葡萄糖酸内酯磷酸葡萄糖酸内酯NADPNADP+NADPNADPH H+H H+6-6-磷酸葡萄糖磷酸葡萄糖glucose 6-phosphateglucose 6-phosphate6-6-磷酸葡萄糖酸磷酸葡萄糖酸-内酯内酯6-phosphoglucono-lactone6-phosphoglucono-lactone6-6-磷酸葡萄糖脱氢
48、酶磷酸葡萄糖脱氢酶PPP途径限速酶,对NADP+有高度特异性第103页/共152页(2)6-磷酸葡萄糖酸内酯磷酸葡萄糖酸内酯 转变为转变为6-磷酸葡萄糖酸磷酸葡萄糖酸6-6-磷酸葡萄糖酸磷酸葡萄糖酸-内酯内酯6-phosphoglucono-lactone6-phosphoglucono-lactone6-6-磷酸葡萄糖酸磷酸葡萄糖酸6-phosphogluconate6-phosphogluconateH H2 2O O内酯酶PPP途径第104页/共152页COCO2 2NADPNADP+NADPNADPH H+H H+(3)6-磷酸葡萄糖酸磷酸葡萄糖酸 转变为转变为5-磷酸核酮糖磷酸核酮糖
49、6-6-磷酸葡萄糖酸磷酸葡萄糖酸6-phosphogluconate6-phosphogluconate5-5-磷酸核酮糖磷酸核酮糖ribulose 5-phosphateribulose 5-phosphate6-磷酸葡萄糖酸脱氢酶PPP途径第105页/共152页5-5-磷酸核酮糖磷酸核酮糖ribulose 5-phosphateribulose 5-phosphate(4)三种五碳糖的互三种五碳糖的互换换5-5-磷酸核糖磷酸核糖ribose 5-phosphateribose 5-phosphate异构酶异构酶5-5-磷酸木酮糖磷酸木酮糖xylulose 5-phosphatexylulo
50、se 5-phosphate差向酶差向酶PPP途径第106页/共152页 许多细胞中合成代谢消耗的NADPH远比核糖需要量大,因此,葡萄糖经此途径生成了多余的核糖。第二阶段反应的意义就在于能通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而与糖酵解过程联系起来,因此磷酸戊糖途径亦称为磷酸已糖旁路。第107页/共152页(5)二分子五碳糖的基团转移反二分子五碳糖的基团转移反应应5-5-磷酸木酮糖磷酸木酮糖5-5-磷酸核糖磷酸核糖7-7-磷酸景天庚酮糖磷酸景天庚酮糖3-3-磷酸甘油醛磷酸甘油醛转酮酶转酮酶PPP途径第108页/共152页(6)七碳糖与三碳糖的基团转移反七碳糖与三碳糖