《概率统计(1)[1].ppt》由会员分享,可在线阅读,更多相关《概率统计(1)[1].ppt(67页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 随机事件的概率 第一节 随机事件第二节 随机事件的概率第三节 条件概率第四节 独立性 第一节 随机事件一、随机试验与样本空间二、随机事件三、事件间的关系与运算一、随机试验与样本空间一、随机试验与样本空间1试验的可能结果不止一个,并且能事先明确试验的所有可能结果2进行试验之前不能确定哪一个结果会出现 其中,可以在相同的条件下重复进行的随机试验称为可重复的随机试验,否则称为不可重复的随机试验随机试验的所有可能结果组成的集合 样本空间ww=W表示,可记为样本点一般用称为样本点的每个结果,中的元素,即样本空间EWT HTHTHHHTTTHTHHHTT1次0次2次在某一批产品中任选一件,检验其是
2、否合格记录某大超市一天内进入的顾客人数 在一大批电视机中任意抽取一台,测试其寿命 观察某地明天的天气是雨天还是非雨天 二、随机事件在一大批电视机中任意抽取一台,测试其寿命规定电视机的寿命超过10000小时时为合格品 满足这一条件的样本点组成 的一个子集 称 为随机试验 的一个随机事件 基本事件:随机试验 有两个基本事件 和 随机试验 有三个基本事件 、和样本空间的两个特殊子集 它包含了试验的所有可能的结果,所以在每次试验中它总是发生,称为必然事件.它不包含任何样本点,因此在每次试验中都不发生,称之为不可能事件.由一个样本点组成的单点集 三、事件间的关系与运算研究原因:希望通过对简单事件的了解掌
3、握较复杂的事件 研究规则:事件间的关系和运算应该按照集合之间的关系和运算来规定 随机试验的E样本空间W子事件和事件积事件差事件互斥(互不相容)对立事件(逆事件)运算规律子事件和事件称为个事件称为个积事件km100某输油管长差事件互斥时发生对立事件运算规律4.对偶律 注:这些运算规律可以推广到任意多个事件上去 1.交换律2.结合律3.分配律例1 设 ,是随机事件,则事件 与 发生,不发生可以表示成 ,至少有两个发生可以表示成 ,恰好发生两个可以表示成 ,中有不多于一个事件发生可以表示成第二节 随机事件的概率一、频率与概率二、概率的性质三、等可能概型(古典概型)四、几何概型一、频率与概率概率定义1
4、的概率.量度称为事件发生的可能性大小的在一次试验中事件AAAnnAnA即发生的频率,记为为事件次,则称比值次重复试验中出现了在这次试验,如果事件了在相同的条件下,进行抛硬币实验试验者德摩根蒲丰K皮尔逊K皮尔逊罗曼诺夫斯基2048404012000240008064010612048601912012396990.51810.50690.50160.50050.4923试验次数出现正面的次数出现正面的频率当当常常会不一样常常会不一样不同时,得到的不同时,得到的)(Afnn这表明频率具有一定的随机波动性对于可重复进行的试验,当试验次数 逐渐增大时,事件 的频率 都逐渐稳定于某个常数 ,呈现出“稳定
5、性”因此,可以用频率来描述概率,定义概率为频率的稳定值我们称这一定义为概率的统计定义这种“稳定性”也就是通常所说的统计规律性频率具有如下性质 1非负性2规范性3有限可加性若是一组两两互不相容的事件则设E是随机试验,W是它的样本空间,对E的每一个事件A,将其对应于一个实数,记为P(A),称为事件A的概率,如果集合函数P()满足下列条件:概率的公理化定义1非负性2规范性3可列可加性二、概率的性质性质1性质2(有限可加性)性质3 性质4 性质5性质6(加法公式)性质5证:证明 性质5证明 性质6性质6(加法公式)证明:因为且故由性质2和性质3得:性质6可以推广到多个事件的情形例如可由归纳法证得一般地
6、,对任意n个事件例1 设 ,为两事件,且设 ,求解而所以于是例2 设证明证三、等可能概型(古典概型)1试验的样本空间只含有有限个元素,即 2试验中每个基本事件发生的可能性相同,即 具有以上两个特点的随机试验称为等可能概型。由于它是概率论发展初期的主要研究对象,所以也称之为古典概型 中某k个不同的数,是这里则有THTHHHTT例3 将一枚硬币抛二次(2)解(1)先给出一个记号,它是组合数的推广,规定 第三节 条件概率一、条件概率二、乘法公式三、全概率公式与贝叶斯公式一、条件概率例1 一个家庭中有两个小孩,已知其中一个是女孩,问另一个也是女孩的概率是多少?(假定生男生女是等可能的)由题意,样本空间
7、为(1)表示事件“至少有一个是女孩”,表示事件“两个都是女孩”,则有由于事件已经发生,所以这时试验的所有可能结果只有三种,而事件包含的基本事件只占其中的一种,所以有解在这个例子中,若不知道事件已经发生的信息,那么事件发生的概率为 其原因在于事件 的发生改变了样本空间,使它由原来的 缩减为 ,而 是在新的样本空间 中由古典概率的计算公式而得到的 这里 (2)关系式(2)不仅对上述特例成立,对一般的古典概型和几何概型问题,也可以证明它是成立的上例中计算 P(B|A)的方法并不普遍适用如果回到原来的样本空间W 中考虑,显然有从而即(3)可以验证,条件概率P(|A)满足概率公理化定义中的三条公理 定义
8、1事件A发生的条件下事件B发生的条件概率根据具体的情况,可选用下列两种方法之一来计算条件概率P(B|A)(1)在缩减后 WA 的样本空间中计算;(2)在原来的样本空间W中,直接由定义计算1 非负性2 规范性3 可列可加性例2 一袋中有10 个球,其中3个黑球,7个白球,依次从袋中不放回取两球(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率解(1)可以在缩减的样本空间 W WA1上计算。因为A1已发生,即第一次取得的是黑球,第二次取球时,所有可取的球只有9只W WA 中所含的基本事件数为9,其中黑球只剩下2个所以 记(2)由于
9、第二次取球发生在第一次取球之后,故W WA2的结构并不直观因此,直接在W W中用定义计算P(A1|A2)更方便些 因为所以 例3 人寿保险公司常常需要知道存活到某一个年龄段的人在下一年仍然存活的概率根据统计资料可知,某城市的人由出生活到50岁的概率为0.90718,存活到51岁的概率为0.90135。问现在已经50岁的人,能够活到51岁的概率是多少?解 记 因此要求显然因为从而 可知该城市的人在50岁到51岁之间死亡的概率约为0.00643在平均意义下,该年龄段中每千个人中间约有6.43人死亡二、乘法公式定理1(乘法公式)则由归纳法可得:则由可得例4 一袋中有a个白球和b个红球。现依次不放回地
10、从袋中取两球.试求两次均取到白球的概率.解记要求显然因此三、全概率公式与贝叶斯公式下面用概率的有限可加性及条件概率的定义和乘法定理建立两个计算概率的公式先引入一个例子 例6 某工厂的两个车间生产同型号的家用电器。据以往经验,第1车间的次品率为0.15,第2车间的次品率为0.12两个车间生产的成品混合堆放在一个仓库里且无区分标志,假设第1、2车间生产的成品比例为2:3(1)在仓库中随机地取一件成品,求它是次品的概率;(2)在仓库中随机地取一只成品,若已知取到的是次品,问该此次品分别是由第1,2车间生产的概率为多少?从而于是解(1)记因为(2)问题归结为计算 和 由条件概率的定义及乘法公式,有定义
11、2定理2(全概率公式)则设试验E的样本空间为定理3(贝叶斯(Bayes)公式)与与全概率公式全概率公式刚好相反,刚好相反,贝叶斯公式贝叶斯公式主要用于当观主要用于当观察到一个事件已经发生时,去求导致所观察到的事察到一个事件已经发生时,去求导致所观察到的事件发生的各种原因、情况或途径的可能性大小件发生的各种原因、情况或途径的可能性大小 例7 假设在某时期内影响股票价格变化的因素只有银行存款利率的变化经分析,该时期内利率下调的概率为60,利率不变的概率为40 根据经验,在利率下调时某支股票上涨的概率为80,在利率不变时,这支股票上涨的概率为40求这支股票上涨的概率解故由全概率公式 例8 由医学统计数据分析可知,人群中患由某种病菌引起的疾病占总人数的0.5%一种血液化验以95%的概率将患有此疾病的人检查出呈阳性,但也以1%的概率误将不患此疾病的人检验出呈阳性现设某人检查出呈阳性反应,问他确患有此疾病的概率是多少?解显然且已知 由贝叶斯公式可得 记B1与B2形成W的一个划分第四节 独立性 主观概率一、独立性 二、主观概率一、独立性 1.两个事件的独立性 定义1若例2 甲乙二人独立地对目标各射击一次,设甲射中目标的概率为0.5,乙射中目标的概率为0.6,求目标被击中的概率解