《(新高考)2022版高考数学二轮复习主攻40个必考点函数与导数考点过关检测三十七理.pdf》由会员分享,可在线阅读,更多相关《(新高考)2022版高考数学二轮复习主攻40个必考点函数与导数考点过关检测三十七理.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、新高考新高考 20222022 版高考数学二轮版高考数学二轮复习主攻复习主攻 4040 个必考点函数与导个必考点函数与导数考点过关检测三十七理数考点过关检测三十七理考点过关检测三十七考点过关检测三十七1 1(2022烟台二模(2022烟台二模)函数函数f f(x x)ln(ln(x xa a)x xx x在在x x0 0 处取得极值处取得极值(1)(1)求实数求实数a a的值;的值;(2)(2)证明:对于任意的正整数证明:对于任意的正整数n n,不等式,不等式 2 23 34 4n n1 1 2 2ln(ln(n n1)1)都成立都成立4 49 9n n1 1解:解:(1)(1)因为因为f f
2、(x x)2 2x x1 1,x xa a又又x x0 0 为为f f(x x)的极值点的极值点1 1所以所以f f(0)(0)1 10 0,所以,所以a a1.1.2 2a a(2)(2)证明:证明:由由(1)(1)知知f f(x x)ln(ln(x x1)1)x x2 2x x.1 1x x 2 2x x3 3 因为因为f f(x x)2 2x x1 1x x1 1x x1 1(x x 1)1)由由f f(x x)0 0,得,得x x0.0.当当x x变化时,变化时,f f(x x),f f(x x)的变化情况如下的变化情况如下表表.2 2x xf f(x x)f f(x x)(1,0)1
3、,0)0 0(0(0,)0 0极大极大值值所以所以f f(x x)f f(0)(0)0 0,即,即 ln(ln(x x1)1)x x2 2x x(当且仅当当且仅当x x0 0 时取等号时取等号)1 1 1 1 2 21 11 1令令x x,那么,那么 lnln 1 1 ,n n n n n n n nn n1 1n n1 1即即 lnln2 2,n nn n2 23 3n n1 13 3所以所以 lnln lnln lnln2 2 1 12 2n n4 4n n1 12 2.n n3 34 4n n1 1即即 2 2 2 2ln(ln(n n1)1)4 49 9n n2 2(2022(2022
4、 届高三武汉调研届高三武汉调研)a aR R,函数函数f f(x x)3 3x xa ae e 1 1 有两个零点有两个零点x x1 1,x x2 2(x x1 1x x2 2)(1)(1)求实数求实数a a的取值范围;的取值范围;(2)(2)证明:证明:e ex x1 1e ex x2 22.2.解:解:(1)(1)f f(x x)1 1a ae e,当当a a00 时,时,f f(x x)0 0,f f(x x)在在 R R 上单调上单调递增,不合题意,舍去递增,不合题意,舍去当当a a0 0 时,时,令令f f(x x)0 0,解得解得x xlnlnx xx xa a;令令f f(x x
5、)0 0,解得,解得x xlnlna a.故故f f(x x)在在(,lnlna a)上单调递增,上单调递增,在在(lnlna a,)上单调递减,)上单调递减由函数由函数y yf f(x x)有两个零点有两个零点x x1 1,x x2 2(x x1 1x x2 2),知其必要条件为知其必要条件为a a0 0 且且f f(lnlna a)lnlna a0 0,即即 0 0a a1.1.此时,此时,1 1lnlna a2 22ln2lna a,且且f f(1)1)1 1 1 1 0.0.e ee ea aa a4 4令令F F(a a)f f(2(22ln2lna a)2 22ln2lna a1
6、1e e2 2a a3 32ln2lna a(0(0a a1)1),e e2 2a a2 2e e2 2e e2 22 2a a那么那么F F(a a)2 20 0,2 2a aa aa a所以所以F F(a a)在在(0,1)(0,1)上单调递增,上单调递增,所以所以F F(a a)F F(1)(1)3 3e e 0 0,即即f f(2(22ln2lna a)0.0.故故a a的取值范围是的取值范围是(0,1)(0,1)(2)(2)证明:法一:令证明:法一:令f f(x x)0 0a a令令g g(x x)2 2x x1 1e ex x.x x1 1e ex x,那么那么g g(x x)x
7、xe e,g g(x x)x x在在(,0)0)上单调递增,在上单调递增,在(0(0,)上单调递,)上单调递减减由由(1)(1)知知 0 0a a1 1,故有,故有1 1x x1 10 0 x x2 2.令令h h(x x)g g(x x)g g(x x)()(1 1x x0)0),那么那么h h(x x)(1(1x x)e)ex x(1(1x x)e)ex x(1 1x x5 50)0),h h(x x)x xe e x xe e x x(e(e e e)0 0,所以所以h h(x x)在在(1,0)1,0)上单调递减,故上单调递减,故h h(x x)h h(0)(0)0 0,故当故当1 1
8、x x0 0 时,时,g g(x x)g g(x x)0 0,所以所以g g(x x)g g(x x),而,而g g(x x1 1)g g(x x2 2)a a,故故g g(x x1 1)g g(x x2 2)又又g g(x x)在在(0(0,)上单调递减,)上单调递减,x x1 10 0,x xx xx xx xx x2 20 0,所以所以x x1 1x x2 2,即,即x x1 1x x2 20 0,故故 e ex x1 1e ex x2 222 e ex x1 1eex x2 22e2ex x1 1x x2 22 22.2.x x1 11 1a ae ex x1 1,法二:由题意得法二:
9、由题意得 x x2 21 1a ae ex x2 2,所所 以以x x1 1x x2 2 2 2 a a(e(ex x1 1 e ex x2 2)且且a ax x2 2x x1 1,e ex x2 2e ex x1 1x x2 2x x1 1所以所以x x1 1x x2 22 2(e(ex x1 1e ex x2 2)e ex x2 2e ex x1 16 6 x x2 2x x1 1 e ex x2 2x x1 11 1.e ex x2 2x x1 11 1令令x x2 2x x1 1t t(t t0)0),那么,那么x x1 1x x2 22 2t t e et t1 1 e e 1 1t
10、 t.t t令令m m(t t)(t t2)e2)e t t2(2(t t0)0),那么,那么m m(t t)(t t1)e1)e 1 1,令令n n(t t)(t t1)e1)e 1(1(t t0)0),那么那么n n(t t)t te e 0 0,所以所以m m(t t)在在(0(0,)上单调递增,)上单调递增,故故m m(t t)m m(0)(0)0 0,所以所以m m(t t)在在(0(0,)上单调递增,)上单调递增,故故m m(t t)m m(0)(0)0 0,即即t tt tt tt t e e 1 1 e e 1 1t tt t2 2,结合知,结合知x x1 1x x2 20 0
11、,故故 e ex x1 1e ex x2 222 e ex x1 1eex x2 22e2ex x1 1x x2 22 22.2.1 13 3(2022汕头模拟(2022汕头模拟)f f(x x)lnlnx x,g g(x x)2 27 7axaxbxbx(a a0),0),h h(x x)f f(x x)g g(x x)(1)(1)假设假设a a3 3,b b2 2,求,求h h(x x)的极值;的极值;(2)(2)假设函数假设函数y yh h(x x)的两个零点为的两个零点为x x1 1,2 2x x2 2(x x1 1x x2 2),记,记x x0 0 x x1 1x x2 22 2,证
12、明:,证明:h h(x x0 0)0.0.3 32 2解:解:(1)(1)h h(x x)lnlnx xx x2 2x x,x x(0(0,2 2),),h h(x x)3 3x x2 21 13 3x x2 2x x1 12 2x xx x 3 3x x1 1 x x1 1,x x(0(0,),)x x 3 3x x1 1 x x1 1 1 1令令h h(x x)0 0,得,得x x,x x3 3 1 1 1 1当当 0 0 x x 时,时,h h(x x)0 0,h h(x x)在在 0 0,上上3 3 3 3 单调递增,单调递增,1 1 1 1当当x x 时,时,h h(x x)0 0,
13、h h(x x)在在,上上3 3 3 3 单调递减,单调递减,8 8 1 1 5 5h h(x x)极大值极大值h h ln 3ln 3,无极小值,无极小值6 6 3 3(2)(2)证明:函数证明:函数y yh h(x x)的两个零点为的两个零点为x x1 1,x x2 2(x x1 1x x2 2),不妨设,不妨设 0 0 x x1 1x x2 2,1 12 2那么那么h h(x x1 1)lnlnx x1 1axax1 1bxbx1 10 0,2 21 12 2h h(x x2 2)lnlnx x2 2axax2 2bxbx2 20 0,2 21 12 2h h(x x1 1)h h(x
14、x2 2)lnlnx x1 1axax1 1bxbx1 1(ln(lnx x2 22 21 12 2axax2 2bxbx2 2)2 21 12 2lnlnx x1 1lnlnx x2 2a a(x x2 2x x1 12 2)b b(x x1 1x x2 2)0.0.2 21 12 22 2即即a a(x x1 1x x2 2)b b(x x1 1x x2 2)lnlnx x1 1lnlnx x2 2,2 2又又h h(x x)f f(x x)g g(x x)(axax1 1x xb b),x x0 0 x x1 1x x2 22 2,9 9 x x1 1x x2 2 2 2b b,h h(
15、x x0 0)a a2 2x x1 1x x2 2 2 2(x x1 1x x2 2)h h(x x0 0)(x x1 1x x2 2)x x1 1x x2 2a ax x1 1x x2 22 2b b2 2 x x1 1x x2 2 x x1 1x x2 2 1 12 2 2 2 x x1 1x x2 2 2 2 a a x x1 1x x2 2 b b x x1 1x x2 2 (ln(lnx x1 1lnlnx x1 1x x2 2 2 2 x x1 1 2 2 1 1 x x2 2 x x2 2)x x1 11 1x x2 2x x1 1lnln.x x2 2x x1 12 2 t t
16、1 1 令令 t t(0(0t t1)1),r r(t t)lnlnt t(0(0 x x2 2t t1 1t t1)1),4 41 1 t t1 1 r r(t t)0 0,2 2 2 2 t t1 1 t t t t1 1 t tr r(t t)在在(0,1)(0,1)上单调递减,故上单调递减,故r r(t t)r r(1)(1)0 0,2 21010 x x1 1 2 2 1 1 x x2 2 x x1 11 1x x2 2x x1 1lnln0 0,即,即(x x1 1x x2 2)h h(x x0 0)x x2 20.0.又又x x1 1x x2 20 0,h h(x x0 0)0.
17、0.4 4(2022(2022 届高三辽宁五校联考届高三辽宁五校联考)函数函数f f(x x)axaxx xlnlnx x.(1)(1)假设假设f f(x x)在在(0(0,)上单调递增,)上单调递增,求求a a的取值范围;的取值范围;(2)(2)假设假设a ae(ee(e 为自然对数的底数为自然对数的底数),证明:证明:1 1当当x x0 0 时,时,f f(x x)x xe e .e ex x2 2解:解:(1)(1)f f(x x)2 2axaxlnlnx x1.1.因为因为f f(x x)在在(0(0,)上单调递增,)上单调递增,所以当所以当x x0 0 时,时,f f(x x)0)0
18、 恒成立,恒成立,即即2 2axax lnlnx x 1010恒恒 成成 立立,即即2 2a alnlnx x1 1x x恒成立恒成立1111lnlnx x1 1设设g g(x x),那么,那么 2 2a ag g(x x)maxmax.x xg g(x x)lnlnx xx x2 2,由,由g g(x x)0 0,得,得 lnlnx x0 0,即,即 0 0 x x1 1;由由g g(x x)0 0,得,得 lnlnx x0 0,即,即x x1.1.所以所以g g(x x)在在(0,1)(0,1)上单调递增,上单调递增,在在(1(1,)上单调递减,上单调递减,那么那么g g(x x)maxm
19、axg g(1)(1)1.1.1 1所以所以 2 2a a1,即1,即a a,故,故a a的取值范围是的取值范围是2 2 1 1 ,.2 2 1 1(2)(2)证明:当证明:当a ae e 时,要证时,要证f f(x x)x xe e ,e ex x1 1即证即证 e ex xx xlnlnx xx xe e .e e2 2x x1 1因为因为x x0 0,所以只需证,所以只需证 e ex xlnlnx xe e,e ex xx x12121 1即证即证 lnlnx xe ex xe ex x.e ex x1 11 11 1设设h h(x x)lnlnx x,那么那么h h(x x)2 2e
20、ex xx xe ex xe ex x1 12 2(x x0)0)e ex x1 1由由h h(x x)0 0,得,得 0 0 x x;由;由h h(x x)0 0,e e1 1得得x x.e e 1 1 1 1 那么那么h h(x x)在在 0 0,上单调递减,上单调递减,在在,e e e e 上单调递增上单调递增 1 1 所以所以h h(x x)minminh h 0 0,从而,从而h h(x x)0,)0,e e 1 1即即 lnlnx x0.0.e ex x设设(x x)e ex xe ex x(x x0)0),那么,那么(x x)e ee e(x x0)0)由由(x x)0 0,得,得 0 0 x x1 1;由;由(x x)1313x x0 0,得,得x x1 1,那么那么(x x)在在(0,1)(0,1)上单调递增,在上单调递增,在(1(1,)上单调递减,)上单调递减,所以所以(x x)maxmax(1)(1)0 0,从而,从而(x x)0,)0,即即 e ex xe ex x0.0.因为因为h h(x x)和和(x x)不同时为不同时为 0 0,1 1x x所以所以 lnlnx xe ex xe e,故原不等式成立,故原不等式成立e ex x1414