《含有耦合电感的电路 (2)2精.ppt》由会员分享,可在线阅读,更多相关《含有耦合电感的电路 (2)2精.ppt(55页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第1页,本讲稿共55页l重点重点 1.1.互感和互感电压互感和互感电压 2.2.有互感电路的计算有互感电路的计算 3.3.变压器和理想变压器原理变压器和理想变压器原理返 回第2页,本讲稿共55页10-1 互感互感 耦合电感元件属于多端元件,在实际电路中,耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。的电路问题的分析方法
2、是非常必要的。下 页上 页返 回第3页,本讲稿共55页下 页上 页变压器变压器返 回第4页,本讲稿共55页下 页上 页电力变压器电力变压器返 回第5页,本讲稿共55页下 页上 页三相电力变压器三相电力变压器返 回第6页,本讲稿共55页下 页上 页小变压器小变压器返 回第7页,本讲稿共55页下 页上 页调压器调压器整流器整流器牵引电磁铁牵引电磁铁电流互感器电流互感器返 回第8页,本讲稿共55页1.1.互感互感线线圈圈1中中通通入入电电流流i1时时,在在线线圈圈1中中产产生生磁磁通通,同同时时,有有部部分分磁磁通通穿穿过过临临近近线线圈圈2,这这部部分分磁磁通通称称为互感磁通。两线圈间有磁的耦合。
3、为互感磁通。两线圈间有磁的耦合。下 页上 页 21+u11+u21i111N1N2定义定义:磁通链磁通链,=N返 回第9页,本讲稿共55页空心线圈空心线圈,与与i 成正比。当只有一个线圈时:成正比。当只有一个线圈时:当两个线圈都有电流时,每一线圈的磁通链当两个线圈都有电流时,每一线圈的磁通链为自感磁通链与互感磁通链的代数和:为自感磁通链与互感磁通链的代数和:M值与线圈的形状、几何位置、空间媒值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,满足质有关,与线圈中的电流无关,满足M12=M21。L 总为正值,总为正值,M 值有正有负。值有正有负。下 页上 页注意 返 回1=11=L1i1
4、 L1 为自感系数,单位为自感系数,单位 H(亨亨)1=11 12=L1i1 M12 i22=22 21=L2i2 M21 i1第10页,本讲稿共55页2.2.耦合系数耦合系数 用耦合系数用耦合系数k 表示两个线表示两个线圈磁耦合的紧密程度。圈磁耦合的紧密程度。k=1 称全耦合称全耦合:漏磁漏磁 1=2=011=21,22=12满足:满足:耦合系数耦合系数 k 与线圈的结构、相互几何位置、与线圈的结构、相互几何位置、空间磁介质有关。空间磁介质有关。下 页上 页注意 返 回第11页,本讲稿共55页互感现象互感现象利用利用变压器:信号、功率传递变压器:信号、功率传递避免避免干扰干扰克服:合理布置线
5、圈相互位置或增加屏蔽减少互感克服:合理布置线圈相互位置或增加屏蔽减少互感 作作 用。用。下 页上 页返 回第12页,本讲稿共55页当当i1为为时时变变电电流流时时,磁磁通通也也将将随随时时间间变变化化,从从而在线圈两端产生感应电压。而在线圈两端产生感应电压。当当i1、u11、u21方方向向与与 符符合合右右手手螺螺旋旋法法则则时时,根据电磁感应定律和楞次定律有根据电磁感应定律和楞次定律有自感电压自感电压互感电压互感电压3.3.耦合电感上的电压、电流关系耦合电感上的电压、电流关系下 页上 页 当两个线圈同时通以电流时,每个线圈两当两个线圈同时通以电流时,每个线圈两端的电压均包含自感电压和互感电压
6、。端的电压均包含自感电压和互感电压。返 回第13页,本讲稿共55页在正弦交流电路中,其相量形式的方程为在正弦交流电路中,其相量形式的方程为下 页上 页返 回第14页,本讲稿共55页 两线圈的自感磁通链和互感磁通链方向一两线圈的自感磁通链和互感磁通链方向一致,互感电压取正,否则取负。表明互感电压致,互感电压取正,否则取负。表明互感电压的正、负:的正、负:(1)与电流的参考方向有关。与电流的参考方向有关。(2)与线圈的相对位置和绕向有关。与线圈的相对位置和绕向有关。下 页上 页注意 返 回第15页,本讲稿共55页4.4.互感线圈的同名端互感线圈的同名端对对自自感感电电压压,当当u,i 取取关关联联
7、参参考考方方向向,u、i与与 符合右手螺旋法则,其表达式为符合右手螺旋法则,其表达式为 上上式式说说明明,对对于于自自感感电电压压由由于于电电压压、电电流流为为同同一一线线圈圈上上的的,只只要要参参考考方方向向确确定定了了,其其数数学学描描述便可容易地写出,可不用考虑线圈绕向。述便可容易地写出,可不用考虑线圈绕向。下 页上 页返 回i1u11第16页,本讲稿共55页对对互互感感电电压压,因因产产生生该该电电压压的的电电流流在在另另一一线线圈圈上上,因因此此,要要确确定定其其符符号号,就就必必须须知知道道两两个个线线圈圈的的绕绕向向。这这在在电电路路分分析析中中显显得得很很不不方方便便。为为解解
8、决决这个问题引入同名端的概念。这个问题引入同名端的概念。下 页上 页 当两个电流分别从两个线圈的对应端子同当两个电流分别从两个线圈的对应端子同时流入或流出,若所产生的磁通相互加强时,则时流入或流出,若所产生的磁通相互加强时,则这两个对应端子称为两互感线圈的同名端。这两个对应端子称为两互感线圈的同名端。同名端同名端返 回第17页,本讲稿共55页*i1i2i3线圈的同名端必须两两确定。线圈的同名端必须两两确定。下 页上 页注意 +u11+u2111 0N1N2+u31N3 返 回第18页,本讲稿共55页确定同名端的方法:确定同名端的方法:(1)当当两两个个线线圈圈中中电电流流同同时时由由同同名名端
9、端流流入入(或或流流出出)时时,两个电流产生的磁场相互增强。两个电流产生的磁场相互增强。i1122*112233*例例(2)当当随随时时间间增增大大的的时时变变电电流流从从一一线线圈圈的的一一端端流流入入时,将会引起另一线圈相应同名端的电位升高。时,将会引起另一线圈相应同名端的电位升高。下 页上 页返 回第19页,本讲稿共55页+V 同名端的实验测定:同名端的实验测定:i1122*电压表正偏。电压表正偏。如图电路,当闭合开关如图电路,当闭合开关 S 时,时,i 增加,增加,当当两两组组线线圈圈装装在在黑黑盒盒里里,只只引引出出四四个个端端线线组组,要要确确定定其其同同名名端端,就就可可以以利利
10、用用上上面面的的结结论论来加以判断。来加以判断。下 页上 页RS+-i返 回第20页,本讲稿共55页由同名端及由同名端及u、i参考方向确定互感线圈的特性方程参考方向确定互感线圈的特性方程 有了同名端,表示两个线圈相互作用时,就有了同名端,表示两个线圈相互作用时,就不需考虑实际绕向,而只画出同名端及不需考虑实际绕向,而只画出同名端及u、i参考参考方向即可。方向即可。下 页上 页返 回i1*u21+Mi1*u21+M第21页,本讲稿共55页例例1-1写写出出图图示示电电路路电电压压、电电流流关关系系式式下 页上 页返 回i1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*
11、L1L2+_u1+_u2i2Mi1*L1L2+_u1-+u2i2M解解第22页,本讲稿共55页10-2 含有耦合电感电路的计算含有耦合电感电路的计算1.1.耦合电感的串联耦合电感的串联顺接串联顺接串联去耦等效电路去耦等效电路下 页上 页返 回iM*u2+R1R2L1L2u1+u+iRLu+第23页,本讲稿共55页反接串联反接串联下 页上 页注意 返 回iM*u2+R1R2L1L2u1+u+iRLu+第24页,本讲稿共55页顺接一次,反接一次,就可以测出互感:顺接一次,反接一次,就可以测出互感:全耦合时全耦合时 当当 L1=L2 时时 ,M=L4M 顺接顺接0 反接反接L=互感的测量方法:互感的
12、测量方法:下 页上 页返 回第25页,本讲稿共55页在正弦激励下:在正弦激励下:*下 页上 页返 回jL1jL2jM+R1+R2第26页,本讲稿共55页相量图:相量图:(a)顺接顺接(b)反接反接下 页上 页返 回*jL1jL2jM+R1+R2第27页,本讲稿共55页同侧并联同侧并联i=i1+i2 解得解得u,i 的关系的关系2.耦合电感的并联耦合电感的并联下 页上 页返 回*Mi2i1L1L2ui+第28页,本讲稿共55页如全耦合:如全耦合:L1L2=M2当当 L1L2 ,Leq=0 (短路短路)当当 L1=L2=L,Leq=L(相当于导线加粗,电感不变相当于导线加粗,电感不变)等效电感:等
13、效电感:去耦等效电路去耦等效电路下 页上 页返 回Lequi+第29页,本讲稿共55页 异侧并联异侧并联i=i1+i2 解得解得u,i 的关系:的关系:等效电感:等效电感:下 页上 页返 回*Mi2i1L1L2ui+第30页,本讲稿共55页3.耦合电感的耦合电感的T型等效型等效同名端为共端的同名端为共端的T型去耦等效型去耦等效下 页上 页返 回3*jL112jL2j M312j(L1-M)j(L2-M)jM第31页,本讲稿共55页异名端为共端的异名端为共端的T型去耦等效型去耦等效下 页上 页返 回3*jL112jL2j M312j(L1+M)j(L2+M)-jM第32页,本讲稿共55页下 页上
14、 页返 回*Mi2i1L1L2ui+(L1-M)M(L2-M)i2i1ui+*Mi2i1L1L2u1+u2+*Mi2i1L1L2u1+u2+(L1-M)M(L2-M)第33页,本讲稿共55页4.受控源等效电路受控源等效电路下 页上 页返 回*Mi2i1L1L2u1+u2+j L1j L2+第34页,本讲稿共55页例例2-1Lab=5HLab=6H解解下 页上 页返 回M=3H6H2H0.5H4HabM=4H6H2H3H5HabM=1H9H7H-3H2H0.5Hab4H3H2H1Hab3H第35页,本讲稿共55页5.有互感电路的计算有互感电路的计算在正弦稳态情况下,有互感的电路的计算仍应用在正弦
15、稳态情况下,有互感的电路的计算仍应用前面介绍的相量分析方法。前面介绍的相量分析方法。注意互感线圈上的电压除自感电压外,还应包含注意互感线圈上的电压除自感电压外,还应包含互感电压。互感电压。一般采用支路法和回路法计算。一般采用支路法和回路法计算。下 页上 页例例2-2列写电路的回路列写电路的回路电流方程。电流方程。返 回MuS+CL1L2R1R2*+ki1i1第36页,本讲稿共55页213解解下 页上 页返 回MuS+CL1L2R1R2*+ki1i1第37页,本讲稿共55页10-3 耦合电感的功率耦合电感的功率 当耦合电感中的施感电流变化时,将出现变化当耦合电感中的施感电流变化时,将出现变化的磁
16、场,从而产生电场(互感电压),耦合电感通的磁场,从而产生电场(互感电压),耦合电感通过变化的电磁场进行电磁能的转换和传输,电磁能过变化的电磁场进行电磁能的转换和传输,电磁能从耦合电感一边传输到另一边。从耦合电感一边传输到另一边。下 页上 页例例求图示电路的复功率。求图示电路的复功率。返 回*jL1jL2j M+R1R2第38页,本讲稿共55页下 页上 页返 回*jL1jL2j M+R1R2第39页,本讲稿共55页下 页上 页线圈线圈1中中互感电压耦合的复功率互感电压耦合的复功率线圈线圈2中中互感电压耦合的复功率互感电压耦合的复功率注意 两个互感电压耦合的复功率为虚部同号、实部两个互感电压耦合的
17、复功率为虚部同号、实部异号,这一特点是耦合电感本身的电磁特性所异号,这一特点是耦合电感本身的电磁特性所决定的决定的。耦合功率中的有功功率相互异号,表明有功功耦合功率中的有功功率相互异号,表明有功功率从一个端口进入,必从另一端口输出,这是率从一个端口进入,必从另一端口输出,这是互感互感M非耗能特性的体现。非耗能特性的体现。返 回第40页,本讲稿共55页下 页上 页耦合功率中的无功功率同号,表明两个互感电耦合功率中的无功功率同号,表明两个互感电压耦合功率中的无功功率对两个耦合线圈的影压耦合功率中的无功功率对两个耦合线圈的影响的性质是相同的,即,当响的性质是相同的,即,当M起同向耦合作用起同向耦合作
18、用时,它的储能特性与电感相同,将使耦合电感时,它的储能特性与电感相同,将使耦合电感中的磁能增加;当中的磁能增加;当M起反向耦合作用时,它的起反向耦合作用时,它的储能特性与电容相同,将使耦合电感的储能减储能特性与电容相同,将使耦合电感的储能减少。少。注意 返 回第41页,本讲稿共55页10-4 变压器原理变压器原理 变压器由两个具有互感的线圈构成,一个线圈变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载,变压器是利用互感接向电源,另一线圈接向负载,变压器是利用互感来实现从一个电路向另一个电路传输能量或信号的来实现从一个电路向另一个电路传输能量或信号的器件。当变压器线圈的心子为非
19、铁磁材料时,称空器件。当变压器线圈的心子为非铁磁材料时,称空心变压器。心变压器。1.1.变压器电路(工作在线性段)变压器电路(工作在线性段)一次回路一次回路二次回路二次回路下 页上 页返 回Z=R+jX*jL1jL2j M+R1R2第42页,本讲稿共55页2.2.分析方法分析方法方程法分析方程法分析令令 Z11=R1+j L1,Z22=(R2+R)+j(L2+X)回路方程:回路方程:下 页上 页返 回jMZ=R+jX*jL1jL2+R1R2第43页,本讲稿共55页等效电路法分析等效电路法分析下 页上 页+Z11+Z22一次一次侧等侧等效电效电路路二次侧二次侧等效电等效电路路返 回根据以上表示式
20、得等效电路。根据以上表示式得等效电路。第44页,本讲稿共55页二次侧对一次侧的引入阻抗。二次侧对一次侧的引入阻抗。引入电阻。恒为正引入电阻。恒为正,表示二次回路吸收表示二次回路吸收的功率是靠一次回路供给的。的功率是靠一次回路供给的。引入电抗。引入电抗。负号反映了引入电抗与二次负号反映了引入电抗与二次回路电抗的性质相反。回路电抗的性质相反。下 页上 页+Z11一次侧等效电路一次侧等效电路注意 返 回第45页,本讲稿共55页引引入入阻阻抗抗反反映映了了二二次次回回路路对对一一次次回回路路的的影影响响。一一、二二次次回回路路虽虽然然没没有有电电的的连连接接,但但互互感感的的作作用用使使二二次次回回路
21、路产产生生电电流流,这这个个电电流流又又影影响响一一次次回回路路的的电电流、电压。流、电压。能量分析能量分析电源发出有功功率电源发出有功功率 P=I12(R1+Rl)I12R1 消耗在一次侧;消耗在一次侧;I12Rl 消耗在二次侧消耗在二次侧证证明明下 页上 页返 回第46页,本讲稿共55页一次侧对二次侧的引入阻抗。一次侧对二次侧的引入阻抗。利用戴维宁定理可以求得变压器的二利用戴维宁定理可以求得变压器的二次侧等效电路次侧等效电路 。二次侧开路时,一次电流在二二次侧开路时,一次电流在二次侧产生的互感电压。次侧产生的互感电压。下 页上 页二次侧等效电路二次侧等效电路+Z22注意 去耦等效法分析去耦
22、等效法分析 对含互感的电路进行去耦等效,再进行分析。对含互感的电路进行去耦等效,再进行分析。返 回第47页,本讲稿共55页已知已知 Us=20 V,一次侧引入阻抗一次侧引入阻抗 Zl=(10j10)。求求:ZX 并求负载获得的有功功率。并求负载获得的有功功率。负载获得功率:负载获得功率:实际是最佳匹配:实际是最佳匹配:例例4-1解解下 页上 页(10+j10)Zl+返 回*j10j10j2+10ZX第48页,本讲稿共55页10-5 理想变压器理想变压器1.1.理想变压器的三个理想化条件理想变压器的三个理想化条件 理想变压器是实际变压器的理想化模型,是对互理想变压器是实际变压器的理想化模型,是对
23、互感元件的理想科学抽象,是极限情况下的耦合电感。感元件的理想科学抽象,是极限情况下的耦合电感。全耦合全耦合无损耗无损耗线圈导线无电阻,做心子的铁磁材线圈导线无电阻,做心子的铁磁材料的磁导率无限大。料的磁导率无限大。参数无限大参数无限大下 页上 页返 回第49页,本讲稿共55页 以上三个条件在工程实际中不可能满足,以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当作理想变压器对待,可使计算过程把实际变压器当作理想变压器对待,可使计算过程简化。简化。下 页上 页注意 2.2.理想变压器的主要性能理想变压器的主要
24、性能i1122N1N2变压关系变压关系返 回第50页,本讲稿共55页若若下 页上 页注意 返 回理想变压器模型理想变压器模型*n:1+_u1+_u2*n:1+_u1+_u2第51页,本讲稿共55页变流关系变流关系考虑理想化条件:考虑理想化条件:0下 页上 页返 回*+_u1+_u2i1L1L2i2M*n:1+_u1+_u2理想变压器模型理想变压器模型i1i2第52页,本讲稿共55页若若i1、i2一个从同名端流入,一个从同名一个从同名端流入,一个从同名端流出,则有端流出,则有下 页上 页注意 变阻抗关系变阻抗关系注意 理想变压器的阻抗变换只改变阻抗的理想变压器的阻抗变换只改变阻抗的大小,不改变阻
25、抗的性质。大小,不改变阻抗的性质。n2Z+返 回*+_u1+_u2i1L1L2i2M+_Z*n:1+_第53页,本讲稿共55页理理想想变变压压器器的的特特性性方方程程为为代代数数关关系系,因因此它是无记忆的多端元件。此它是无记忆的多端元件。理理想想变变压压器器既既不不储储能能,也也不不耗耗能能,在在电路中只起传递信号和能量的作用。电路中只起传递信号和能量的作用。功率性质功率性质下 页上 页表明 返 回*n:1+_u1+_u2i1i2第54页,本讲稿共55页例例5-1已已知知电电源源内内阻阻RS=1k,负负载载电电阻阻RL=10。为为使使RL获得最大功率,求理想变压器的变比获得最大功率,求理想变压器的变比n。当当 n2RL=RS 时匹配,即时匹配,即10n2=1 000n2=100,n=10下 页上 页n2RL+uSRS解解应用变阻抗性质应用变阻抗性质返 回RLuSRS*n:1+_第55页,本讲稿共55页