《2.3 初等模型-.ppt》由会员分享,可在线阅读,更多相关《2.3 初等模型-.ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第第二二章章 初等模型初等模型2.1 公平的席位分配公平的席位分配2.2 录像机计数器的用途录像机计数器的用途2.3 双层玻璃窗的功效双层玻璃窗的功效2.4 汽车刹车距离汽车刹车距离2.5 划艇比赛的成绩划艇比赛的成绩2.6 实物交换实物交换2.7 核军备竞赛核军备竞赛2.8 启帆远航启帆远航2.9 量纲分析与无量纲化量纲分析与无量纲化问问题题甲有物品甲有物品X,乙有物品乙有物品Y,双方为满足更高的需要,双方为满足更高的需要,商定相互交换一部分。研究实物交换方案。商定相互交换一部分。研究实物交换方案。yxp.用用x,y分别表示甲分别表示甲(乙乙)占有占有X,Y的数量。设交换前甲占的数量。设交
2、换前甲占有有X的数量为的数量为x0,乙占有乙占有Y的数量为的数量为y0,作图:作图:若不考虑双方对若不考虑双方对X,Y的的偏爱,则矩形内任一点偏爱,则矩形内任一点 p(x,y)都是一种交换方案:甲占有都是一种交换方案:甲占有(x,y),乙占有乙占有(x0-x,y0-y)xyyo0 xo2.6 实物交换实物交换xyyoy1y20 x1x2xop1p2.甲的无差别曲线甲的无差别曲线分析与建模分析与建模如果甲占有如果甲占有(x1,y1)与占有与占有(x2,y2)具有同样的满意程度,具有同样的满意程度,即即p1,p2对甲是无差别的,对甲是无差别的,MN将将所有与所有与p1,p2无差无差别的点的点连接接
3、起来,得到一条起来,得到一条无差无差别曲曲线MN,线上各点的满意度相同线上各点的满意度相同,线的形状反映对线的形状反映对X,Y的偏爱程度,的偏爱程度,N1M1p3(x3,y3).比比MN各点满意度更高的点如各点满意度更高的点如p3,在另一条无差别曲线在另一条无差别曲线M1N1上。上。于是形成一族无差别曲线(无数条)。于是形成一族无差别曲线(无数条)。p1.p2.c1 y0 xf(x,y)=c1无差别曲线族的性质:无差别曲线族的性质:单调减单调减(x增加增加,y减减小小)下凸下凸(凸向原点凸向原点)互不相交互不相交在在p1点占有点占有x少、少、y多,多,宁愿以较多的宁愿以较多的 y换取换取较少的
4、较少的 x;在在p2点占有点占有y少、少、x多,多,就要以较多的就要以较多的 x换取换取较少的较少的 y。甲的无差别曲线族记作甲的无差别曲线族记作f(x,y)=c1c1满意度满意度(f 等满意度曲线)等满意度曲线)xyOg(x,y)=c2c2 乙的无差别曲线族乙的无差别曲线族 g(x,y)=c2具有相同具有相同性质(形状可以不同)性质(形状可以不同)双方的交换路径双方的交换路径xyyoOxof=c1Oxyg=c2乙的无差别曲线族乙的无差别曲线族 g=c2(坐坐标系标系xOy,且反向)且反向)甲的无差别曲线族甲的无差别曲线族 f=c1ABp P 双方满意的交换方案必双方满意的交换方案必在在AB(
5、交换路径)上交换路径)上因为在因为在AB外的任一点外的任一点p,(双方双方)满意度低于满意度低于AB上的点上的点p两族曲线切点连线记作两族曲线切点连线记作ABABp 交换方案的进一步确定交换方案的进一步确定交换方案交换方案 交换后甲的占有量交换后甲的占有量(x,y)0 x x0,0 y y0矩形内任矩形内任一点一点交换路交换路径径AB双方的无差别曲线族双方的无差别曲线族等价交等价交换原则换原则X,Y用货币衡量其价值,设交换用货币衡量其价值,设交换前前x0,y0价值相同,则等价交换原价值相同,则等价交换原则下交换路径为则下交换路径为CD(x0,0),(0,y0)两点的连线两点的连线CDAB与与C
6、D的的交点交点p设设X单价单价a,Y单价单价b,则等价交换下则等价交换下ax+by=s(s=ax0=by0)yyo0 xo.x2.7 核军备竞赛核军备竞赛 冷战时期美苏声称为了保卫自己的安全,实行冷战时期美苏声称为了保卫自己的安全,实行“核威慑核威慑战略战略”,核军备竞赛不断升级。,核军备竞赛不断升级。随着前苏联的解体和冷战的结束,双方通过了一系列的随着前苏联的解体和冷战的结束,双方通过了一系列的核裁军协议。核裁军协议。在什么情况下双方的核军备竞赛不会无限扩张,而存在在什么情况下双方的核军备竞赛不会无限扩张,而存在暂时的平衡状态。暂时的平衡状态。当一方采取加强防御、提高武器精度、发展多弹头导弹
7、当一方采取加强防御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发生什么变化。等措施时,平衡状态会发生什么变化。估计平衡状态下双方拥有的最少的核武器数量,这个数估计平衡状态下双方拥有的最少的核武器数量,这个数量受哪些因素影响。量受哪些因素影响。背背景景以双方以双方(战略战略)核导弹数量描述核军备的大小。核导弹数量描述核军备的大小。假定双方采取如下同样的假定双方采取如下同样的核威慑战略:核威慑战略:认为对方可能发起所谓第一次核打击,即倾其全部认为对方可能发起所谓第一次核打击,即倾其全部核导弹攻击己方的核导弹基地;核导弹攻击己方的核导弹基地;乙方在经受第一次核打击后,应保存足够的核导弹,乙方在
8、经受第一次核打击后,应保存足够的核导弹,给对方重要目标以毁灭性的打击。给对方重要目标以毁灭性的打击。在任一方实施第一次核打击时,假定一枚核导弹只能在任一方实施第一次核打击时,假定一枚核导弹只能攻击对方的一个核导弹基地。攻击对方的一个核导弹基地。摧毁这个基地的可能性是常数,它由一方的攻击精摧毁这个基地的可能性是常数,它由一方的攻击精度和另一方的防御能力决定。度和另一方的防御能力决定。模模型型假假设设图图的的模模型型y=f(x)甲方有甲方有x枚导弹,乙方所需的最少导弹数枚导弹,乙方所需的最少导弹数x=g(y)乙方有乙方有y枚导弹,甲方所需的最少导弹数枚导弹,甲方所需的最少导弹数当当 x=0时时 y
9、=y0,y0乙方的乙方的威慑值威慑值xyy00y0甲方实行第一次打击后已经没有导弹,乙方为毁灭甲甲方实行第一次打击后已经没有导弹,乙方为毁灭甲方工业、交通中心等目标所需导弹数方工业、交通中心等目标所需导弹数x1x0y1P(xm,ym)x=g(y)xy0y0y=f(x)y=f(x)乙安全区乙安全区甲甲安安全全区区双方双方安全区安全区P平衡点平衡点(双方最少导弹数双方最少导弹数)乙安全线乙安全线精细精细模型模型乙方乙方残存率残存率 s 甲方一枚导弹攻击乙方一个甲方一枚导弹攻击乙方一个基地,基地未被摧毁的概率。基地,基地未被摧毁的概率。sx个基地未摧毁,个基地未摧毁,yx个基地未攻击。个基地未攻击。
10、xy甲方以甲方以 x攻击乙方攻击乙方 y个基地中的个基地中的 x个个,y0=sx+yxx=yy0=sy乙的乙的xy个被攻击个被攻击2次,次,s2(xy)个未摧毁;个未摧毁;y(xy)=2y x个被攻击个被攻击1次,次,s(2y x)个未摧毁个未摧毁y0=s2(xy)+s(2y x)x=2yy0=s2yyx2yy=y0+(1-s)xy=y0/sy=y0/s2 a交换比交换比(甲乙导弹数量比甲乙导弹数量比)x=a y,精细精细模型模型x=y,y=y0/sx=2y,y=y0/s2y0威慑值威慑值s残存率残存率y=f(x)y是一条上凸的曲线是一条上凸的曲线y0变大,曲线上移、变陡变大,曲线上移、变陡s
11、变大,变大,y减小,曲线变平减小,曲线变平a变大,变大,y增加,曲线变陡增加,曲线变陡xy0y0 xy,y=y0+(1-s)xx=yx=2yyx2y,甲方增加经费保护及疏散工业、交通中心等目标甲方增加经费保护及疏散工业、交通中心等目标乙方威慑值乙方威慑值 y0变大变大xy0y0 x0P(xm,ym)x=g(y)y=f(x)甲方的被动防御也会使双方军备竞赛升级。甲方的被动防御也会使双方军备竞赛升级。(其它因素不变)(其它因素不变)乙安全线乙安全线 y=f(x)上移上移模型解释模型解释 平衡点平衡点PP 甲方将固定核导弹基地改进为可移动发射架甲方将固定核导弹基地改进为可移动发射架乙安全线乙安全线y
12、=f(x)不变不变甲方残存率变大甲方残存率变大威慑值威慑值x 0和交换比不变和交换比不变x减小,甲安全线减小,甲安全线x=g(y)向向y轴靠近轴靠近xy0y0 x0P(xm,ym)x=g(y)y=f(x)模型解释模型解释 甲方这种单独行为,会使双方的核导弹减少甲方这种单独行为,会使双方的核导弹减少PP 双方发展多弹头导弹,每个弹头可以独立地摧毁目标双方发展多弹头导弹,每个弹头可以独立地摧毁目标(x,y仍为双方核导弹的数量仍为双方核导弹的数量)双方威慑值减小,残存率不变,交换比增加双方威慑值减小,残存率不变,交换比增加y0减小减小 y下移且变平下移且变平xy0y0 x0P(xm,ym)x=g(y
13、)y=f(x)a 变大变大 y增加且变陡增加且变陡双方导弹增加还是减少,需要更多信息及更详细的分析双方导弹增加还是减少,需要更多信息及更详细的分析模型解释模型解释 乙安全线乙安全线 y=f(x)数值积分及其在数模中的应用为什么要作数值积分为什么要作数值积分 许多函数许多函数“积不出来积不出来”,只能用数值方法,如只能用数值方法,如 积分是重要的数学工具,是微分方程、概率积分是重要的数学工具,是微分方程、概率论等的基础;在实际问题中有直接应用。论等的基础;在实际问题中有直接应用。对于用离散数据或者图形表示的函数对于用离散数据或者图形表示的函数,计算积分只有求助于数值方法。计算积分只有求助于数值方
14、法。数值数值积分积分数数 值值 积积 分分 的的 基基 本本 思思 路路回回 忆忆 定定 积积 分分 的的 定定 义义各种数值积分方法研究的是各种数值积分方法研究的是如何取值,区间如何取值,区间如何划分,如何划分,使得既能保证一定精度,计算量又小。使得既能保证一定精度,计算量又小。n n充分大时充分大时I In n就是就是I I的数值积分的数值积分Newton-cotes型求积公式型求积公式拉格朗日插值多项式的振荡拉格朗日插值多项式的振荡Runge现象现象取n=2,4,6,8,10,计算Ln(x),画出图形复化梯形求积公式,复化复化梯形求积公式,复化simpson求积公式求积公式高斯高斯(Ga
15、uss)(Gauss)求积公式求积公式代数精确度越高,公式越精确。代数精确度越高,公式越精确。高斯公式的思路高斯公式的思路取消对节点的限制,按照代数精度最大取消对节点的限制,按照代数精度最大的原则,同时确定节点的原则,同时确定节点xk和系数和系数AkGauss-Lobatto求积公式求积公式用用MATLAB 作数值积分作数值积分复化梯形复化梯形求积公式求积公式trapz(x)输入数组x,输出按梯形公式x的积分(单位步长)trapz(x,y)输入同长度数组 x,y,输出按梯形公式y对x的积分(步长不一定相等)用用MATLAB 作数值积分作数值积分复化辛普森公式复化辛普森公式quad(fun,a,
16、b,tol)用辛普森(2阶)公式计算以 fun.m命名的函数在(a,b)上的积分tol为绝对误差,缺省时为10-6quad8(fun,a,b,tol)用辛普森(8阶)公式计算Gauss-Lobatto公式quadl(fun,a,b,tol)用自适应Gauss-Lobatto公式计算 fun是被积函数,用法与是被积函数,用法与quad相同相同 用用MATLAB 作数值积分作数值积分例例.计算计算1 1)梯形公式)梯形公式将(0,/4)100等分2 2)辛普森公式辛普森公式3)Gauss-Lobatto公式公式%辛普森公式z1=quad(1./(1-sin(x),0,pi/4)%与精确值比较dz1
17、=z1-sqrt(2)%Gauss-Lobatto公式z2=quadl(1./(1-sin(x),0,pi/4)%与精确值比较dz2=z2-sqrt(2)%梯形公式 x=0:pi/400:pi/4;y=1./(1-sin(x);z3=trapz(y)*pi/400z4=trapz(x,y)%与精确值比较dz3=z3-sqrt(2)dz4=z4-sqrt(2)实例实例人造卫星轨道长度人造卫星轨道长度轨道长度轨道长度yxo 近地点s1=439km,远地点s2=2384kms1s2地球半径r=6371kmr需要作数值积分需要作数值积分s1=439km,s2=2384km,r=6371kmyxos1s
18、2rs1s2yxoracb数值积分实例数值积分实例 人造卫星轨道长度人造卫星轨道长度function y=weixing(t)a=7782.5;b=7721.5;y=sqrt(a2*sin(t).2+b2*cos(t).2);t=0:pi/10:pi/2;y1=weixing(t);11=4*trapz(t,y1)12=4*quad(weixing,o,pi/2,1e-6)用梯形公式和辛普森公式计算用梯形公式和辛普森公式计算只将区间只将区间5等分,梯形公式就给出很好的结果等分,梯形公式就给出很好的结果轨道长度轨道长度 L L=4.8707 104千米千米数值积分实例数值积分实例 人造卫星轨道长度人造卫星轨道长度