IIR模拟滤波器设计(New).ppt

上传人:wuy****n92 文档编号:70792641 上传时间:2023-01-28 格式:PPT 页数:69 大小:762KB
返回 下载 相关 举报
IIR模拟滤波器设计(New).ppt_第1页
第1页 / 共69页
IIR模拟滤波器设计(New).ppt_第2页
第2页 / 共69页
点击查看更多>>
资源描述

《IIR模拟滤波器设计(New).ppt》由会员分享,可在线阅读,更多相关《IIR模拟滤波器设计(New).ppt(69页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数字信号处理数字信号处理AmplitudeAmplitudeTimeTimeFrequencyFrequency(a)a)IIR滤波器设计滤波器设计n 什么是滤波器什么是滤波器n IIR滤波器基本结构滤波器基本结构n 设计思想设计思想n 设计模拟低通滤波器设计模拟低通滤波器2 滤波器实际上是一种运运算算过过程程,将一组输入的数字序列通过运算通过运算后转变为输出序列。数字滤波器一般可以用两种方法实现:l 用数字硬件硬件装配成专用信号处理机;l 将所需要的运算编成程序程序让计算机来执行。回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器h(n)x(n)y(n)3滤波器的种类很多,分类

2、方法也不同;滤波器的种类很多,分类方法也不同;滤波器的种类很多,分类方法也不同;滤波器的种类很多,分类方法也不同;1.1.从从从从功能上功能上功能上功能上分:低通、高通、带通、带阻;分:低通、高通、带通、带阻;分:低通、高通、带通、带阻;分:低通、高通、带通、带阻;2.2.从从从从实现方法实现方法实现方法实现方法上分:上分:上分:上分:FIRFIR、IIRIIR;3.3.从从从从设计方法设计方法设计方法设计方法上来分:切比雪夫、上来分:切比雪夫、上来分:切比雪夫、上来分:切比雪夫、巴特沃斯;巴特沃斯;巴特沃斯;巴特沃斯;4.4.从从从从处理信号处理信号处理信号处理信号分:经典滤波器、现代滤波器

3、。分:经典滤波器、现代滤波器。分:经典滤波器、现代滤波器。分:经典滤波器、现代滤波器。回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器4l l经典滤波器经典滤波器经典滤波器经典滤波器假假定定输输入入信信号号x(n)中中的的有用成分和和希望去除的成分,各自占有不同的频带。当当x(n)经经过过一一个个线线性性系系统统(即即滤滤波波器器)后后即即可可将将欲欲去去除除的的成成分分有有效效地去除。地去除。若信号和噪声的频谱相互重叠,那么经典滤波器将无能为力。若信号和噪声的频谱相互重叠,那么经典滤波器将无能为力。回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器过滤噪声l l

4、现代滤波器现代滤波器现代滤波器现代滤波器主要研究从含有噪声时间序列中估估估估计计计计出出出出信信信信号号号号的某些特征或信号本身。一旦信号被估计出,那么估计出的信号将比原信号会有高的信噪比。现代滤波器把信号和噪声都视为随随机机信信号号,利用它们的统计特征(如自相关函数、功率谱等)导出一套最佳估值算法,然后用硬件或软件予以实现。现代滤波器源于维维纳纳,代表有维维纳纳滤滤波波器器、卡卡尔尔曼曼滤滤波波器器、线线性性预预测测器、自适应滤波器器、自适应滤波器等。提取信号5数字滤波器是离离散散时间系统,所处理的信号是离散时间信号。时域离散系统可以用差差分分方方程程、单单位位脉脉冲冲响响应应以及系系统统函

5、函数数进行描述。如果系统输入、输出服从N 阶差分方程:系统函数:回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器6H(z)可以对应不同结构。例如:回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器7结论:结论:结论:结论:1.滤波器的基本特性(如有限长有限长冲激响应FIR与无限长无限长冲激响应IIR)决定了结构上有不同的特点。2.不同结构所需的存储单元存储单元及乘法次数乘法次数不同,前者影响复杂性,后者影响运算速度。3.有限精度(有限字长)实现情况下,不同运算结构的误差及稳定性不同。4.好的滤波器结构应该易于控制滤波器易于控制滤波器性能,适合于模块化实现,便于时分

6、复用便于时分复用。回顾回顾:什么是滤波器:什么是滤波器:什么是滤波器:什么是滤波器8IIRIIR滤波器的特点:滤波器的特点:滤波器的特点:滤波器的特点:单位冲激响应h(n)是无限长无限长的,n;系统函数H(z)在有限长有限长Z平面(0|Z|Mif N M b=b zeros(1,N-M);b=b zeros(1,N-M);%补补补补0 0elseifelseif M N M N a=a zeros(1,M-N);a=a zeros(1,M-N);%补补补补0 0,使,使,使,使a a、b b等长等长等长等长 N=M;N=M;elseelse NM=0;NM=0;endend参数:参数:参数:参

7、数:b:b:直接型的分子多项式系数直接型的分子多项式系数直接型的分子多项式系数直接型的分子多项式系数a:a:直接型的分母多项式系数直接型的分母多项式系数直接型的分母多项式系数直接型的分母多项式系数b0=b0=增益系数增益系数增益系数增益系数B=B=包含各包含各包含各包含各b bk k的的的的K3K3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵A=A=包含各包含各包含各包含各a ak k的的的的K3K3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵23级联型级联型 函数函数函数函数K=K=floorfloor(N/2);B=zeros(K,3);A=zeros(K,3);(N/2);B=z

8、eros(K,3);A=zeros(K,3);if K*2=N;if K*2=N;b=b 0;b=b 0;a=a 0;a=a 0;end end broots=broots=cplxpaircplxpair(roots(b);(roots(b);%共轭复根对共轭复根对共轭复根对共轭复根对aroots=cplxpair(roots(a);aroots=cplxpair(roots(a);for i=1:2:2*Kfor i=1:2:2*K Brow=broots(i:1:i+1,:);Brow=broots(i:1:i+1,:);Brow=real(Brow=real(polypoly(Brow

9、);(Brow);%把根转换为二阶多项式把根转换为二阶多项式把根转换为二阶多项式把根转换为二阶多项式 B(B(fixfix(i+1)/2),:)=Brow;(i+1)/2),:)=Brow;%fixfix:趋:趋:趋:趋0 0(q q去掉小数部分取整)去掉小数部分取整)去掉小数部分取整)去掉小数部分取整)Arow=aroots(i:1:i+1,:);Arow=aroots(i:1:i+1,:);Arow=real(poly(Arow);Arow=real(poly(Arow);A(fix(i+1)/2),:)=Arow;A(fix(i+1)/2),:)=Arow;endend24例例 1(续(

10、续(续(续 1 1)代码如下:代码如下:代码如下:代码如下:b=8,-4,11,-2;b=8,-4,11,-2;a=1,-1.25,0.75,-0.125;a=1,-1.25,0.75,-0.125;b0,B,A=b0,B,A=dir2casdir2cas(b,a)(b,a)将将将将例例例例1 1转换为级联型。转换为级联型。转换为级联型。转换为级联型。结果如下:结果如下:结果如下:结果如下:b0=8B=1.0000 -0.3100 1.3161 1.0000 -0.1900 0A=1.0000 -1.0000 0.5000 1.0000 -0.2500 025练习练习 1代码如下:代码如下:b

11、=1,-3,11,-27,18;b=1,-3,11,-27,18;a=16,12,2,-4,-1;a=16,12,2,-4,-1;bo,B,A=bo,B,A=dir2casdir2cas(b,a)(b,a)已知:结果为:结果为:bo=0.0625B=1.0000 0.0000 9.0000 1.0000 -3.0000 2.0000A=1.0000 1.0000 0.5000 1.0000 -0.2500 -0.125026级联型级联型 函数函数函数函数l l级联型级联型级联型级联型直接型直接型直接型直接型function function b,ab,a=cas2dir cas2dir(b0,

12、B,A);(b0,B,A);K,L=K,L=size(Bsize(B););b=1;b=1;a=1;a=1;for i=1:1:Kfor i=1:1:K b=b=conv(b,B(iconv(b,B(i,:);,:);a=a=conv(a,A(iconv(a,A(i,:);,:);endendb=b*b0;b=b*b0;参数:参数:参数:参数:b=b=直接型的分子多项式系数直接型的分子多项式系数直接型的分子多项式系数直接型的分子多项式系数a=a=直接型的分母多项式系数直接型的分母多项式系数直接型的分母多项式系数直接型的分母多项式系数b0=b0=增益系数增益系数增益系数增益系数B=B=包含各包含

13、各包含各包含各bkbk的的的的KK乘乘乘乘3 3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵A=A=包含各包含各包含各包含各akak的的的的KK乘乘乘乘3 3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵27级联型级联型 函数函数函数函数l l级联滤波函数级联滤波函数级联滤波函数级联滤波函数function y=function y=casfiltrcasfiltr(b0,B,A,x);(b0,B,A,x);K,L=K,L=size(Bsize(B););N=N=length(xlength(x););w=zeros(K+1,N);w=zeros(K+1,N);w(1,:)=x;w(1,

14、:)=x;for i=1:1:Kfor i=1:1:K w(i+1,:)=w(i+1,:)=filter(B(i,:),A(i,:),w(ifilter(B(i,:),A(i,:),w(i,:);,:);%输出为下一级的输入输出为下一级的输入输出为下一级的输入输出为下一级的输入endendy=b0*w(K+1,:);y=b0*w(K+1,:);参数:参数:参数:参数:y=y=输出序列输出序列输出序列输出序列b0=b0=级联型的增益系数级联型的增益系数级联型的增益系数级联型的增益系数B=B=包含各包含各包含各包含各bkbk的的的的K3K3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵A=A=包

15、含各包含各包含各包含各akak的的的的K3K3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵x=x=输入序列输入序列输入序列输入序列28例例 1(续(续(续(续 2 2)代码如下:代码如下:代码如下:代码如下:b=8,-4,11,-2;b=8,-4,11,-2;a=1,-1.25,0.75,-0.125;a=1,-1.25,0.75,-0.125;x=1,0,0,0,0,0,0;x=1,0,0,0,0,0,0;%以单位脉冲作为输入信号以单位脉冲作为输入信号以单位脉冲作为输入信号以单位脉冲作为输入信号y1=y1=filterfilter(b,a,x)(b,a,x)%直接滤波直接滤波直接滤波直接

16、滤波b0,B,A=dir2cas(b,a);b0,B,A=dir2cas(b,a);y2=y2=casfiltrcasfiltr(b0,B,A,x)(b0,B,A,x)%级联滤波级联滤波级联滤波级联滤波再看再看再看再看前面的例前面的例前面的例前面的例1 1,先将其转换为级联型,再用级联滤波函数,先将其转换为级联型,再用级联滤波函数,先将其转换为级联型,再用级联滤波函数,先将其转换为级联型,再用级联滤波函数验证结果是否与直接型滤波一致。验证结果是否与直接型滤波一致。验证结果是否与直接型滤波一致。验证结果是否与直接型滤波一致。结果为结果为:(一致)(一致)(一致)(一致)y1=8.0000 6.0

17、00012.5000 10.1250 4.0313 -0.9922 -2.9980y2=8.0000 6.000012.5000 10.1250 4.0312 -0.9922 -2.9980293.3.并联型并联型并联型并联型把H(z)展开成部分分式部分分式之和之和:回顾回顾:IIRIIR滤波器结构滤波器结构滤波器结构滤波器结构一阶网络二阶网络30并联型结构并联型结构并联型结构并联型结构 回顾回顾:IIRIIR滤波器结构滤波器结构滤波器结构滤波器结构31阅读阅读 P P132132 【例【例【例【例5.3.35.3.3】将将H(z)展成部分分式形式:展成部分分式形式:将每一部分用直接型结构实现

18、,其并联型网络结构如图:将每一部分用直接型结构实现,其并联型网络结构如图:32回顾回顾:IIRIIR滤波器结构滤波器结构滤波器结构滤波器结构函数:直接型函数:直接型函数:直接型函数:直接型并联型并联型并联型并联型function C,B,A=function C,B,A=dir2pardir2par(b,a);(b,a);M=length(b);M=length(b);N=length(a);N=length(a);r1,p1,C=residuez(b,a);r1,p1,C=residuez(b,a);%部分分式部分分式部分分式部分分式p=cplxpair(p1,10000000*eps);p

19、=cplxpair(p1,10000000*eps);I=I=cplxcomp cplxcomp(p1,p);(p1,p);%下面有解释下面有解释下面有解释下面有解释r=r1(I);r=r1(I);K=floor(N/2);K=floor(N/2);B=zeros(K,2);B=zeros(K,2);A=zeros(K,3);A=zeros(K,3);参数:参数:参数:参数:C=C=当当当当length(b)=length(a)length(b)=length(a)时的时的时的时的多项式多项式多项式多项式B=B=包含包含包含包含b bk k的的的的K K 2 2 矩阵矩阵矩阵矩阵A=A=包含包

20、含包含包含a ak k的的的的K K 3 3 矩阵矩阵矩阵矩阵b=b=直接型的分子多项式直接型的分子多项式直接型的分子多项式直接型的分子多项式a=a=直接型的分母多项式直接型的分母多项式直接型的分母多项式直接型的分母多项式33回顾回顾:IIRIIR滤波器结构滤波器结构滤波器结构滤波器结构if K*2=N;if K*2=N;for i=1:2:N-2for i=1:2:N-2Brow=r(i:1:i+1,:);Brow=r(i:1:i+1,:);Arow=p(i:1:i+1,:);Arow=p(i:1:i+1,:);Brow,Arow=Brow,Arow=residuezresiduez(Bro

21、w,Arow,);(Brow,Arow,);%Z%Z变换:部分分式展开变换:部分分式展开变换:部分分式展开变换:部分分式展开 B(fix(i+1)/2),:)=real(Brow);B(fix(i+1)/2),:)=real(Brow);A(fix(i+1)/2),:)=real(Arow);A(fix(i+1)/2),:)=real(Arow);end end Brow,Arow=Brow,Arow=residuezresiduez(r(N-1),p(N-1),);(r(N-1),p(N-1),);B(K,:)=real(Brow)0;A(K,:)=real(Arow)0;B(K,:)=re

22、al(Brow)0;A(K,:)=real(Arow)0;elseelse for i=1:2:N-1 for i=1:2:N-1 Brow=r(i:1:i+1,:);Brow=r(i:1:i+1,:);Arow=p(i:1:i+1,:);Arow=p(i:1:i+1,:);Brow,Arow=Brow,Arow=residuez residuez(Brow,Arow,);(Brow,Arow,);B(fix(i+1)/2),:)=real(Brow);B(fix(i+1)/2),:)=real(Brow);A(fix(i+1)/2),:)=real(Arow);A(fix(i+1)/2),:

23、)=real(Arow);end endendend34回顾回顾:IIRIIR滤波器结构滤波器结构滤波器结构滤波器结构其中,其中,其中,其中,cplxcompcplxcomp函数:函数:函数:函数:function I=cplxcomp(p1,p2)function I=cplxcomp(p1,p2)%比较两个包含同样标量元素但(可能)有不同下标的复数对。%本程序必须用在CPLXPAIR 程序之后以便重新频率极点向量%及其相应的留数向量,即p2=cplxpair(p1)I=;I=;for j=1:1:length(p2)for j=1:1:length(p2)for i=1:1:length(

24、p1)for i=1:1:length(p1)if(abs(p1(i)-p2(j)0.0001)if(abs(p1(i)-p2(j)=N M=N时时时时(FIR)(FIR)的多项式部分的多项式部分的多项式部分的多项式部分%B=%B=包含各包含各包含各包含各bkbk的的的的K K 2 2维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵%A=%A=包含各包含各包含各包含各akak的的的的K K 3 3维实系数矩阵维实系数矩阵维实系数矩阵维实系数矩阵%x=%x=输入序列输入序列输入序列输入序列K,L=size(B);K,L=size(B);N=length(x);N=length(x);w=zero

25、s(K+1,N);w=zeros(K+1,N);w(1,:)=filter(C,1,x);w(1,:)=filter(C,1,x);for i=1:1:Kfor i=1:1:K w(i+1,:)=filter(B(i,:),A(i,:),x);w(i+1,:)=filter(B(i,:),A(i,:),x);endendy=sum(w);y=sum(w);37例例 1(续(续(续(续 3 3)代码如下:代码如下:代码如下:代码如下:b=8,-4,11,-2;b=8,-4,11,-2;a=1,-1.25,0.75,-0.125;a=1,-1.25,0.75,-0.125;x=1,0,0,0,0,

26、0,0;x=1,0,0,0,0,0,0;y1=filter(b,a,x)y1=filter(b,a,x)%直接滤波直接滤波直接滤波直接滤波C,B,A=dir2par(b,a);C,B,A=dir2par(b,a);y3=parfiltr(C,B,A,x)y3=parfiltr(C,B,A,x)%并联滤波并联滤波并联滤波并联滤波再用并联滤波函数验证结果是否与直接型滤波一致。再用并联滤波函数验证结果是否与直接型滤波一致。再用并联滤波函数验证结果是否与直接型滤波一致。再用并联滤波函数验证结果是否与直接型滤波一致。结果为结果为:(一致)(一致)y1=8.0000 6.0000 12.5000 10.1

27、250 4.0313 -0.9922 -2.9980y3=8.0000 6.0000 12.5000 10.1250 4.0312 -0.9922 -2.998038数字滤波器:数字滤波器:线性时不变系统线性时不变系统线性时不变系统线性时不变系统,将输入序列通过运算转变为输出序列。,将输入序列通过运算转变为输出序列。1 IIR设计设计思想思想回顾:回顾:回顾:回顾:IIRIIR数字滤波器数字滤波器数字滤波器数字滤波器将上式两边经过傅里叶变换,可得将上式两边经过傅里叶变换,可得 39以以低低低低通通通通滤滤滤滤波波波波器器器器为为例例,频频率率响响应应有有通通带带、过过渡渡带带及及阻阻带带三三个

28、个范范围围。图中图中1为通带的容限,为通带的容限,2为阻带的容限。为阻带的容限。1 IIR设计设计思想思想回顾:滤波器技术指标回顾:滤波器技术指标回顾:滤波器技术指标回顾:滤波器技术指标40在通带内,幅度响应以最大误差在通带内,幅度响应以最大误差1逼近于逼近于1,即,即 在阻带内,幅度响应以误差小于在阻带内,幅度响应以误差小于2而逼近于零,即而逼近于零,即 s|p 式中,式中,p p,s s分别为通带截止频率和阻带截止频率分别为通带截止频率和阻带截止频率分别为通带截止频率和阻带截止频率分别为通带截止频率和阻带截止频率。1 IIR设计设计思想思想记住:记住:它们是它们是它们是它们是数字频数字频数

29、字频数字频率率率率。41实际上,往往使用通带最大衰减实际上,往往使用通带最大衰减Ap和阻带最小衰减和阻带最小衰减As。Ap及及As的定义分别为:的定义分别为:这里,假设这里,假设|H(ej0)|=1。l若若|H(ej)|在在p处满足处满足|H(ejp)|=0.707,则,则Ap=3 dB;l若若|H(ej)|在在s处满足处满足|H(ejs)|=0.001,则,则As=60 dB。1 IIR设计设计思想思想42A.按照实际任务要求,按照实际任务要求,确定滤波器的性能指标。确定滤波器的性能指标。B.用用一一个个因因果果稳稳定定的的离离散散线线性性时时不不变变系系统统的的系系统统函函数数,去去逼逼近

30、近这这一一性性能能要要求求。根根据据不不同同要要求求可可以以用用IIR系系统统函函数数,也也可可以以用用FIR系系统统函函数数去去逼逼近。近。C.利利用用有有限限精精度度算算法法来来实实现现这这个个系系统统函函数数。这这里里包包括括选选择择运运算算结结构构,选选择择合合适适的的字字长长(包包括括系系数数量量化化及及输输入入变变量量、中中间间变变量量和和输输出出变变量量的的量量化)以及有效数字的处理方法(舍入、截尾)等。化)以及有效数字的处理方法(舍入、截尾)等。1 IIR设计设计思想思想滤波器设计步骤滤波器设计步骤滤波器设计步骤滤波器设计步骤43IIR滤波器的系统函数可以用极、零点表示:滤波器

31、的系统函数可以用极、零点表示:一般满足一般满足MN,这类系统称为,这类系统称为N阶系统。阶系统。当当MN时时,H(z)可可看看成成是是一一个个N阶阶IIR子子系系统统与与一一个个(M-N)阶阶的的FIR子子系系统的级联。统的级联。这里,一般假定这里,一般假定这里,一般假定这里,一般假定MM N N。1 IIR设计设计思想思想级联型级联型结构结构44滤波器的设计目标:滤波器的设计目标:滤波器的设计目标:滤波器的设计目标:确定确定确定确定HH(Z Z)中的中的中的中的a ak k,b bk k,或确定或确定或确定或确定c ck k、d dk k 及及及及 A A一般有两种方法:一般有两种方法:一般

32、有两种方法:一般有两种方法:(1)利用模拟滤波器的理论来设计数字滤波器利用模拟滤波器的理论来设计数字滤波器利用模拟滤波器的理论来设计数字滤波器利用模拟滤波器的理论来设计数字滤波器首先,设计一个合适的模拟滤波器首先,设计一个合适的模拟滤波器Ha(s);然后,变换成满足预定指标的数字滤波器然后,变换成满足预定指标的数字滤波器H(z)。1 IIR设计设计思想思想45(2)最优化设计法最优化设计法最优化设计法最优化设计法首首先先选选择择一一种种最最优优准准则则,如如最最小小均均方方误误差差准准则则,即即使使实实际际频频响响幅幅度度|H(ej)|与理想频响幅度与理想频响幅度|Hd(ej)|的均方误差的均

33、方误差最小。最小。1 IIR设计设计思想思想接着,求在此最佳准则下滤波器系统函数的系数接着,求在此最佳准则下滤波器系统函数的系数ak,bk。一一般般通通过过不不断断改改变变滤滤波波器器系系数数ak、bk,分分别别计计算算;最最后后,找找到到使使为为最最小时的一组系数小时的一组系数ak,bk,从而完成设计。从而完成设计。46常常用用模模拟拟原原型型滤滤波波器器:巴巴特特沃沃斯斯滤滤波波器器、切切比比雪雪夫夫滤滤波波器器、椭椭圆圆滤波器、贝塞尔滤波器等。滤波器、贝塞尔滤波器等。l l巴特沃斯滤波器巴特沃斯滤波器巴特沃斯滤波器巴特沃斯滤波器具有单调下降的幅频特性;具有单调下降的幅频特性;l切切比比雪

34、雪夫夫滤滤波波器器的的幅幅频频特特性性在在通通带带或或者者在在阻阻带带有有波波动动,可可以以提提高高选选择择性;性;l椭椭圆圆滤滤波波器器的的选选择择性性相相对对前前三三种种是是最最好好的的,但但在在通通带带和和阻阻带带内内均均为为等等波纹幅频特性。波纹幅频特性。l贝塞尔滤波器通带内有较好的线性相位特性;贝塞尔滤波器通带内有较好的线性相位特性;根据具体要求可以选用不同类型的滤波器。根据具体要求可以选用不同类型的滤波器。2 设计设计模模拟拟低通低通滤滤波器波器47各种理想模拟滤波器的幅频特性各种理想模拟滤波器的幅频特性 2 设计设计模模拟拟低通低通滤滤波器波器48模拟滤波器幅度响应常用幅度平方函

35、数模拟滤波器幅度响应常用幅度平方函数|Ha(j)|2来表示,即来表示,即 由于滤波器冲激响应由于滤波器冲激响应ha(t)是实函数,因而是实函数,因而Ha(j)满足下式:满足下式:所以所以 式中,式中,Ha(s)是模拟滤波器的系统函数,它是是模拟滤波器的系统函数,它是s的有理函数。的有理函数。2 设计设计模模拟拟低通低通滤滤波器波器一、由幅度平方函数来确定系统函数一、由幅度平方函数来确定系统函数一、由幅度平方函数来确定系统函数一、由幅度平方函数来确定系统函数49现在的问题是:现在的问题是:由已知的由已知的|Ha(j)|2求得求得Ha(s)设设Ha(s)有有一一个个极极点点(或或零零点点)位位于于

36、s=s0处处,由由于于冲冲激激响响应应ha(t)为为实实函函数数,则则极极点点(或或零零点点)必必必必以以以以共共共共轭轭轭轭对对对对形形形形式式式式出出出出现现现现,因因而而s=s0*处处也也一一定定有有一一极极点点(或或零零点点),所所以以与与之之对对应应Ha(-s)在在s=-s0和和-s0*处处必必有有极极点点(或或零零点),点),Ha(s)Ha(-s)在虚轴上的零点(或极点)一定是二阶的。在虚轴上的零点(或极点)一定是二阶的。如下图所示。如下图所示。2 设计设计模模拟拟低通低通滤滤波器波器50基本思路:基本思路:(1 1)确定)确定)确定)确定Ha(s)的零、极点;的零、极点;的零、极

37、点;的零、极点;lHa(s)的极点落在的极点落在s的左半平面的左半平面,Ha(-s)的的极点极点落在落在s的右半平面。的右半平面。l如如果果要要求求最最小小的的相相位位延延时时特特性性,则则Ha(s)左左半半平平面面零零点点;如如无无特特殊殊要要求求,则可将对称零点的任一半(应为共轭对)取为则可将对称零点的任一半(应为共轭对)取为Ha(s)的的零点零点。(2)确定确定确定确定Ha(s)的出增益常数的出增益常数的出增益常数的出增益常数;(3)由由由由Ha(s)的零点、极点及增益常数,确定系统函数的零点、极点及增益常数,确定系统函数的零点、极点及增益常数,确定系统函数的零点、极点及增益常数,确定系

38、统函数Ha(s)。2 设计设计模模拟拟低通低通滤滤波器波器51二、巴特沃斯低通逼近二、巴特沃斯低通逼近二、巴特沃斯低通逼近二、巴特沃斯低通逼近巴特沃斯低通滤波器幅度平方函数定义为巴特沃斯低通滤波器幅度平方函数定义为巴特沃斯低通滤波器幅度平方函数定义为巴特沃斯低通滤波器幅度平方函数定义为 式中,式中,N为正整数,代表滤波器的阶数。为正整数,代表滤波器的阶数。l当当=0时,时,|Ha(j0)|=1;l当当=c时,时,|Ha(jc)|=1/=0.707,20lg|Ha(j0)/Ha(jc)|=3 dB。c为为3 dB截截止止频频率率。当当=c时时,不不管管N为为多多少少,所所有有的的特特性性曲曲线线

39、都都通通过过-3dB点,或者说衰减为点,或者说衰减为 3 dB。2 设计设计模模拟拟低通低通滤滤波器波器52巴巴特特沃沃斯斯低低通通滤滤波波器器在在通通带带内内有有最最大大平平坦坦的的幅幅度度特特性性。随随着着由由0增增大大,|Ha(j)|2单调减小,单调减小,N越大,通带内特性越平坦,过渡带越窄。越大,通带内特性越平坦,过渡带越窄。2 设计设计模模拟拟低通低通滤滤波器波器53在幅度平方函数式中代入在幅度平方函数式中代入=s/j,可得可得 所所以以,巴巴特特沃沃斯斯滤滤波波器器的的零零点点全全部部在在s=处处,在在有有限限S平平面面内内只只有有极极点点,因因而属于所谓而属于所谓“全极点型全极点

40、型”滤波器。滤波器。Ha(s)Ha(-s)的极点为的极点为 k=1,2,2N 由由此此看看出出,Ha(s)Ha(-s)的的2 2N N个个个个极极极极点点点点等等等等间间间间隔隔隔隔分分分分布布布布在在在在半半半半径径径径为为为为 c c的的的的圆圆圆圆(巴巴特特沃沃斯斯圆圆)上上,极极点点间间的的角角度度间间隔隔为为/N rad。例例如如,N3及及N4时时,Ha(s)Ha(-s)的极点分布分别如下图的(的极点分布分别如下图的(a)和)和(b)所示。所示。2 设计设计模模拟拟低通低通滤滤波器波器54N N3 3和和和和N N4 4时极点分布时极点分布时极点分布时极点分布 2 设计设计模模拟拟低

41、通低通滤滤波器波器55可可见见,N为为奇奇数数时时,实实轴轴上上有有极极点点;N为为偶偶数数时时,实实轴轴上上没没有有极极点点。但但极点决不会落在虚轴上,这样滤波器才有可能是稳定的。极点决不会落在虚轴上,这样滤波器才有可能是稳定的。为为为为形形形形成成成成稳稳稳稳定定定定的的的的滤滤滤滤波波波波器器器器,HHa a(s s)HHa a(-(-s s)的的的的2 2N N个个个个极极极极点点点点中中中中只只只只取取取取S S左左半半平平面面的的N个个极点为极点为极点为极点为HHa a(s s)的极点,的极点,的极点,的极点,而右半平面的而右半平面的N个极点构成个极点构成Ha(-s)的极点。的极点

42、。Ha(s)的表示式为的表示式为 2 设计设计模模拟拟低通低通滤滤波器波器56l分子系数分子系数cN由由Ha(s)的低频特性决定,代入的低频特性决定,代入Ha(0)=1,可求得;可求得;l而而sk为为 k=1,2,N 2 设计设计模模拟拟低通低通滤滤波器波器572 设计设计模模拟拟低通低通滤滤波器波器模拟低通滤波器指标:模拟低通滤波器指标:模拟低通滤波器指标:模拟低通滤波器指标:由参数由参数Ap、As、s,和,和p给出给出设计目标:设计目标:设计目标:设计目标:确定滤波器阶次确定滤波器阶次N和截止频率和截止频率c。要求:要求:要求:要求:(1)在在=p,-10lg|Ha(j)|2=Ap,或或

43、记住:记住:它们是它们是模拟频模拟频模拟频模拟频率率率率。58(2)在在=s,-10lg|Ha(j)|2=As,或或 解出解出N:2 设计设计模模拟拟低通低通滤滤波器波器59为了在为了在p精确地满足指标要求,精确地满足指标要求,要求:要求:或者在或者在s精确地满足指标要求,要求:精确地满足指标要求,要求:2 设计设计模模拟拟低通低通滤滤波器波器60导出三阶(导出三阶(N=3)巴特沃斯模拟低通滤波器的系统函数。)巴特沃斯模拟低通滤波器的系统函数。设设c2 rad/s。【解】【解】幅度平方函数是幅度平方函数是 令令2=-s2即即s=j,则有,则有 各极点各极点:k=1,2,6 例例 261所给出的

44、六个所给出的六个sk为为:由由s1,s2,s3三个极点构成的三个极点构成的系统函数为系统函数为:例例 262MATLAB函数函数 阅读阅读P160161 阅读阅读【例例6.2.2】63自自编编函数函数函数函数函数函数 1 1:由由由由 c c和和和和N N求分子、分母的系数。求分子、分母的系数。求分子、分母的系数。求分子、分母的系数。function b,a=u_buttap(N,Omegac);function b,a=u_buttap(N,Omegac);z,p,k=z,p,k=buttapbuttap(N);(N);%归一化巴特沃斯函数归一化巴特沃斯函数归一化巴特沃斯函数归一化巴特沃斯函

45、数【见教材【见教材【见教材【见教材P P160160】p=p*Omegac;p=p*Omegac;k=k*OmegacN;k=k*OmegacN;B=real(poly(z);B=real(poly(z);%多项式多项式多项式多项式 b0=k;b0=k;b=k*B;b=k*B;a=real(poly(p);a=real(poly(p);参数:参数:参数:参数:b=b=HHa a(s)(s)分子多项式的系数分子多项式的系数分子多项式的系数分子多项式的系数a=a=HHa a(s)(s)分母多项式的系数分母多项式的系数分母多项式的系数分母多项式的系数N=N=滤波器的阶数滤波器的阶数滤波器的阶数滤波器

46、的阶数 Omegac=Omegac=以弧度以弧度以弧度以弧度/秒的截止频率秒的截止频率秒的截止频率秒的截止频率64例例 2:编编程程用函数计算:用函数计算:用函数计算:用函数计算:代码如下:代码如下:N=3;N=3;Omegac=2;Omegac=2;b a=u_buttap(N,Omegac)b a=u_buttap(N,Omegac)结果为:结果为:b=8.0000a=1.0000 4.0000 8.0000 8.000065设计一个模拟低通巴特沃斯滤波器,指标如下:设计一个模拟低通巴特沃斯滤波器,指标如下:(1)通带截止频率:通带截止频率:p=0.2;通带最大衰减:;通带最大衰减:Ap=

47、7 dB。(2)阻带截止频率:阻带截止频率:s=0.3;阻带最小衰减:;阻带最小衰减:As=16dB。解:解:由由p,得,得:例例 366由由s,得:得:在上面两个在上面两个c之间选之间选c=0.5。最后可得(级联型)最后可得(级联型):例例 367例例 3:编编程程函数函数函数函数 2 2:由由Wp,Ws,Rp,As求分子、分母的系数。求分子、分母的系数。function b,a=afd_butt(Wp,Ws,Rp,As);function b,a=afd_butt(Wp,Ws,Rp,As);if Wp=0if Wp=0 error(error(通带边缘必须大于通带边缘必须大于通带边缘必须大

48、于通带边缘必须大于 0)0)endendif Ws=Wpif Ws=Wp error(error(阻带边缘必须大于通带边缘阻带边缘必须大于通带边缘阻带边缘必须大于通带边缘阻带边缘必须大于通带边缘)endendif(Rp=0)|(As 0)if(Rp=0)|(As 0)error(error(通带波动或阻带衰减必须大于通带波动或阻带衰减必须大于通带波动或阻带衰减必须大于通带波动或阻带衰减必须大于0)0)end end N=N=ceilceil(log10(10(Rp/10)-1)/(10(As/10)-1)/(2*log10(Wp/Ws);(log10(10(Rp/10)-1)/(10(As/1

49、0)-1)/(2*log10(Wp/Ws);OmegaC=Wp/(10(Rp/10)-1)(1/(2*N);OmegaC=Wp/(10(Rp/10)-1)(1/(2*N);b,a=u_buttap(N,OmegaC);b,a=u_buttap(N,OmegaC);68例例 3:编编程程【例【例【例【例3 3】的代码】的代码】的代码】的代码Wp=0.2*pi;Ws=0.3*pi;Rp=7;As=16;Wp=0.2*pi;Ws=0.3*pi;Rp=7;As=16;Ripple=10 (-Rp/20);Attn=10 (-As/20);Ripple=10 (-Rp/20);Attn=10 (-As/20);b,a=afd_butt(Wp,Ws,Rp,As);b,a=afd_butt(Wp,Ws,Rp,As);C,B,A=sdir2cas(b,a)C,B,A=sdir2cas(b,a)结果为:结果为:结果为:结果为:C=0.1238B=0 0 1A=1.0000 0.4985 0.2485 0 1.0000 0.498569

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁